Moving Average processes - Stationary and Weakly Dependent

  Рет қаралды 81,934

Ben Lambert

Ben Lambert

Күн бұрын

Пікірлер: 27
@jonatanisse6362
@jonatanisse6362 6 жыл бұрын
Man you're a life saver! This is simple and crystal clear! When my professor is discussing this topic it sounds like glossolalia.
@martigonzalezferreres7093
@martigonzalezferreres7093 5 жыл бұрын
Ben, I do not have words to describe how useful are your videos... You are the best!!
@bhaskarroy8753
@bhaskarroy8753 Жыл бұрын
Excellent explanation Ben. Thank you very much.
@shijingsi8288
@shijingsi8288 7 жыл бұрын
Thanks very much, Ben!! You are very helpful!!! So clear and easy to follow!
@slippedgrey
@slippedgrey 10 жыл бұрын
your videos are really wonderful for study econometric thank you for sharing!
@bfindiy
@bfindiy 8 жыл бұрын
i let you are my professor on video, every chapter are extremely clear for understanding, really thank you for sharing
@walcott0
@walcott0 6 жыл бұрын
no wonder you have problem understanding the content
@AnshumanKumar007
@AnshumanKumar007 5 жыл бұрын
4:57, this applies to the general proof for a moving average process where the individual rvs are not necessarily from a normal distribution
@shaali4781
@shaali4781 4 жыл бұрын
Please upload videos of bayesian statistics
@slippedgrey
@slippedgrey 10 жыл бұрын
And I am studying time series econometric now do you have a video list for this topic? because I just don't know what to start with without a list
@qderossi2790
@qderossi2790 5 жыл бұрын
good video! It really helps a lot, thx!
@antimoustique3175
@antimoustique3175 4 жыл бұрын
thank you for your video! just a question, does it mean that the MA(1) process is weakly stationary or strictly stationary ?
@Djc99120
@Djc99120 2 жыл бұрын
Weakly until and unless the multivariate normality of xt s are assumed
@stephg7404
@stephg7404 6 жыл бұрын
videos are great but wish they went to more depth, i get lost in the Variance and Covariance
@realisttik
@realisttik 6 жыл бұрын
Hello sir, is MA representation still a AR (1) process?
@nickhollinger627
@nickhollinger627 8 жыл бұрын
Var(et+(theta)et-1) = Var(et) + (theta)^2Var(et-1) + 2(theta)Cov(et,et-1) correct? Are you not missing the 2(theta)Cov(et,et-1) when solving for Var(xt)?
@nickhollinger627
@nickhollinger627 8 жыл бұрын
Or just eliminated b/c Cov(et,et-1) = 0?
@lastua8562
@lastua8562 4 жыл бұрын
He explicitly said he leaves that out because of iid errors.
@1vaas
@1vaas 9 жыл бұрын
how can we arrive to the definition of epsilon(t) and epsilon(t-1)? if X(t) is calculated from e(t), how are we getting e(t) without knowing X(t)?
@looyt
@looyt 9 жыл бұрын
+1vaas e(t) is a variable that exhibits a random behavior with mean 0 and var sigmasquared. examples of this variable might be change in temperature per day- it can take positive or negative values but the mean is 0. consequently, e(t-1) is the change in temperature yesterday.
@1vaas
@1vaas 9 жыл бұрын
+loo yuntong michael thanks for the answer. However, I understand that e(t) is a random variable with 0 mean and some variance. My doubt is how that error is occuring. suppose, e(t) is error at time point (t). that means it is difference between two values at time (t). what are those two values is my doubt
@gymmel1991
@gymmel1991 8 жыл бұрын
+Ashok Varma , Ashok, it's a shock! :)
@shafiqnasran1
@shafiqnasran1 6 жыл бұрын
Why is some of the MA(1) model that I have seen is different? For example, my lecture note states it as Y_t = e_t - theta * e _t-1
@lastua8562
@lastua8562 4 жыл бұрын
I guess it is similarly an MA(1). It does not need to be positively related to the previous error, just related is enough. If you wish, you could also get a negative theta when estimating, making the whole thing positive.
@revolutionarydefeatism
@revolutionarydefeatism 4 жыл бұрын
It seems that after 7:00 there is a noise of football fans in the background. :-D
@Tino51
@Tino51 4 жыл бұрын
The ugliest sigma i've ever seen
@lastua8562
@lastua8562 4 жыл бұрын
the most useless comment I've ever seen
Autoregressive Order one process introduction and example
5:11
Ben Lambert
Рет қаралды 178 М.
An introduction to Moving Average Order One processes
8:08
Ben Lambert
Рет қаралды 146 М.
MY HEIGHT vs MrBEAST CREW 🙈📏
00:22
Celine Dept
Рет қаралды 105 МЛН
Это было очень близко...
00:10
Аришнев
Рет қаралды 7 МЛН
MAGIC TIME ​⁠@Whoispelagheya
00:28
MasomkaMagic
Рет қаралды 37 МЛН
Weakly dependent time series
7:17
Ben Lambert
Рет қаралды 49 М.
What are Moving Average (MA) Models
5:01
Aric LaBarr
Рет қаралды 69 М.
ARMA Stationarity, Invertibility, and Causality [Time Series]
11:15
Highly persistent time series
6:13
Ben Lambert
Рет қаралды 26 М.
MA(1) Moving Average Process: Mean Autocovariances and ACF
6:38
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Singular Value Decomposition (SVD): Mathematical Overview
12:51
Steve Brunton
Рет қаралды 399 М.
What does Ergodic mean for Random Processes?
3:01
Iain Explains Signals, Systems, and Digital Comms
Рет қаралды 11 М.
Introduction to the Moving Average Model
5:13
Justin Eloriaga
Рет қаралды 7 М.
Autoregressive vs Moving Average Order One processes - part 2
4:29