ARMA Stationarity, Invertibility, and Causality [Time Series]

  Рет қаралды 43,648

math et al

math et al

Күн бұрын

Пікірлер: 27
@RebeccaLi-s1k
@RebeccaLi-s1k Жыл бұрын
Best video i've ever seen in explaining ARMA, tysm!
@yomaru_1999
@yomaru_1999 4 жыл бұрын
keep on making more videos! love your clear delivery.
@andreassteiner2275
@andreassteiner2275 13 күн бұрын
Your say that the criteria for stationarity is that all roots of the polynomial of the AR terms "are not on the unit circle". I think this should be "all AR-related roots" *OUTSIDE* the unit circle. Only stationary ARMA processes can be causal.
@archer9322
@archer9322 3 жыл бұрын
Thank you very much for making such a concise video!
@camilochaves4771
@camilochaves4771 3 жыл бұрын
I wish my tuition went to you instead of my professors
@졔졔-k7u
@졔졔-k7u 3 жыл бұрын
Thank you for your kind explanation!
@brucechali5618
@brucechali5618 Ай бұрын
Nice explanation
@batistasarfoakuoko7011
@batistasarfoakuoko7011 4 жыл бұрын
Thumps up. This video is dope
@You-sb4nf
@You-sb4nf Жыл бұрын
I think you made a mistake in the second example, several resources state that if |θ| < 1 then the process is invertible, which in this case it is less than 1. Same rule applies for causality but with φ.
@krishnabarfiwala5766
@krishnabarfiwala5766 3 жыл бұрын
Amazing
@adamdewaal340
@adamdewaal340 4 жыл бұрын
dumb question but if you have say xt=5-0.55xt+zt, what happens to the constant ? Does the backshift equation become (-4-0.55b)=zt?
@21_jadhav_rajendra84
@21_jadhav_rajendra84 2 жыл бұрын
Why does Your Model have 2 Xt values and no Zt-1 or Xt-1 terms. I think the model you gave is not proper. However your questions surrounds 5 i.e a constant value which we can Consider as Drift Mew. For such problem our prof have told us to simply take Yt= Xt-5. And then it's easier.
@adamkolany1668
@adamkolany1668 Жыл бұрын
you should not use the lettter Z in the two different meanings as here. once it a complex variable, and once a white noise process. why don't you just use B in the first case?
@hanifmuhammad5543
@hanifmuhammad5543 Жыл бұрын
can you explain why does the 3 properties apply?
@viajeespacial5391
@viajeespacial5391 Жыл бұрын
Al parecer utilizaste mal la fórmula cuadrática para encontrar las raíces de los phi
@NishadiKumarasiri
@NishadiKumarasiri Жыл бұрын
i think you made a mistake in the first example. θ(B) >1 should be for function invertible.
@tuananhtran5071
@tuananhtran5071 9 ай бұрын
same question, it should be > 1, not >=1
@petermburu4830
@petermburu4830 2 жыл бұрын
Thanks for the video. Please confirm if the quadratic is right?
@gigz54
@gigz54 2 жыл бұрын
looked right to me, did you think something was wrong?
@yashwanthsai9304
@yashwanthsai9304 8 ай бұрын
you sound like penny from big bang tv show
@totochandelier
@totochandelier 4 жыл бұрын
thanks for this video i'm confuse because I don't understand why you say that -8 is > - 1 and then lies into the unit circle . Isn't it the contrary?
@mathetal
@mathetal 4 жыл бұрын
It's -0.8 not -8 !
@totochandelier
@totochandelier 4 жыл бұрын
@@mathetal ok ! thanks
@zuriatiwenger6480
@zuriatiwenger6480 3 жыл бұрын
@@mathetal hi! Isn't -0.8 < -1.0, which means it's in the unit circle. Plus, you drew the dot on the y-axis to show that.
@JacobBe5
@JacobBe5 3 жыл бұрын
@@zuriatiwenger6480 -0.8 is greater than -1, it is to the right of -1. Is it easier to understand if said as -0.8 is between -1 and 1, so it is inside the unit circle. And that means it fails the test?
@Geetoowavy
@Geetoowavy 3 жыл бұрын
3:12
[Time Series] Weak Stationarity
8:20
math et al
Рет қаралды 28 М.
|i Factorial| You Won't Believe The Outcome
8:24
BriTheMathGuy
Рет қаралды 372 М.
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,6 МЛН
Creative Justice at the Checkout: Bananas and Eggs Showdown #shorts
00:18
Fabiosa Best Lifehacks
Рет қаралды 6 МЛН
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Invertibility of Time Series : Time Series Talk
9:56
ritvikmath
Рет қаралды 50 М.
Invertibility - converting an MA(1) to an AR(infinite) process
6:24
Time Series Talk : ARMA Model
7:12
ritvikmath
Рет қаралды 171 М.
What are Moving Average (MA) Models
5:01
Aric LaBarr
Рет қаралды 71 М.
Time Series Talk : Autoregressive Model
8:54
ritvikmath
Рет қаралды 337 М.
MA(1) Moving Average Process: Mean Autocovariances and ACF
6:38
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 292 М.
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 2,6 МЛН