If anyone is searching all over KZbin for a video explaining SEM in a simplified yet concised manner, then this one's it 👌🏼👌🏼👌🏼👍🏼..worth 40 mins of your life.
@narendeepan2 жыл бұрын
This lecture series is amazing. I had to recently take a module on my PhD on Quantitative Methods, and as a first time learner of SEM, I find this video really helpful. Thank you very much Professor Sturgis.
@hhhhhh359 Жыл бұрын
not me out here learning about it while in high school 😭😭
@narendeepan Жыл бұрын
@@hhhhhh359 Jesus, you learn this while in High School?
@hhhhhh359 Жыл бұрын
@@narendeepan yeah but by choice not bc its in the syllabus lol
@narendeepan Жыл бұрын
@@hhhhhh359 Very good. You are smart.
@elicutemedia Жыл бұрын
I used to assume that SEM was quite difficult but this lecture series is truly enlightening. Thank you Professor Sturgis 😍
@aligharbal48133 жыл бұрын
You really made my life easy Prof Patric. Thank you very much for this series of educating vedios.
@emmanuelabraham1135 Жыл бұрын
Thanks a lot Prof Sturgis for these clear and informative lectures
@norhanmokhtarabdeldayem70763 жыл бұрын
Thank you so much for posting this series, very helpful!!
@RealPillowBfdi5 жыл бұрын
Really easy to follow and clear, thank you very much for this video.
@MadhumatiManjunath Жыл бұрын
Thank you, Dr. Sturgis! It's such a lucid lecture.
@angelaplus8704 жыл бұрын
great lecture, very clear and well structured!
@xiaoxiadong54354 жыл бұрын
Great video! Thank you for posting the series! I have a couple of quick questions- at 34:55, why is there no variance associated with each of the square boxes (i.e., observed variables)? Also, are the parameter estimates for the errors always fixed to 1? Thank you very much!
@RobinBeaumont7 жыл бұрын
Hi at 14:47 point 3 I'm not sure what you mean by 'the sem' as S is the observed covariance matrix which you then compare against the model derived one (called capital sigma) by an minimalisation process.
@daveywuzere5 жыл бұрын
S as in Structure as in the variance/covariance matrix is the data structure of the model
@mikojavier24353 жыл бұрын
Thank you for the clear and concise explanation
@shalinichatterjee2042 жыл бұрын
Thank you Prof Sturgis, quick check about the factor loading, why is it 2? ( 35.30 in the video)
@nisaradil4 жыл бұрын
Your effort is appreciated
@zollkaukim53693 жыл бұрын
How do we choose which one of the indicators will be the fixed variable? I.e. in the example the path between the construct and X2 could be fixed to 1 aswell. Thank you!
@jasvirkaur66193 жыл бұрын
Thanks a ton Prof Patrick 🙏 wonderful explanation
@LuSanFR4 жыл бұрын
The only productive critic that I would make is that while having a real person presenting the topic is perhaps more entertaining for the viewer, it adds a bit of extraneous load on them. As per Mayer's recommandations on multimedia presentations, I would recommend only having a voice presenting the topic at hand do as to avoid unwanted effects on learning. Thanks a million times for the video. Clear and to the point.
@drewfasa3 жыл бұрын
Disagree
@maggiey96884 жыл бұрын
So easy to understand. I learned so much! Thank yoU!
@rathachl2 жыл бұрын
Thanks for your sharing. It is very useful for researcher
@amolohal71194 жыл бұрын
Thank You Sir -Well Explained.If Possible kindly have a separate video on Observed variable with Example.
@douglasdemoulin59183 жыл бұрын
do correlated factor models explain unidimentionality if the 2 latent variables have strong correlations
@hemantakumardash12563 жыл бұрын
Very good presentation
@eyadha13 жыл бұрын
thank you very much. great help for me. it is clearly explaind.
@ilkaAR6 жыл бұрын
Very good! Thanks for sharing!
@sethulakshmig29992 жыл бұрын
Dear sir, your videos are simply awesome. You are explaining simply and understandably. Expecting more videos. Sir, I have one doubt too. When performing model analysis, I got an error like the model is unidentified and adds 9 constraints. How to resolve this issue sir? Could you please help me?
@rumbo22632 жыл бұрын
here's a very BASIC question. who decides the relationships between latent variables- is it the researchers discretion ?
@tn54035 жыл бұрын
Very much grateful
@istar1235 жыл бұрын
"...the diagonal, which is shown in bold, indicates the variance, so the covariance of a variable with itself... gives us the variance of that variable. So covariance of a variance with itself is its variance." WHAT.
@mohseneslami98537 жыл бұрын
Thanks you . your presentations are very formative.
@annabelleroda-dafielmoto3050 Жыл бұрын
Excellent!
@stevendavedurado20883 жыл бұрын
Hello, will it be okay if someone can explain to me "what really is parameters?" I have ideas on it but, I can't really provide a definite explanation on it. Thank you so much. This will really help me writing my methodlogy for my undergraduate thesis.
@colinlee12372 жыл бұрын
parameters summarize data for the population level, statistics summarize data for the given analyzed sample
@anohoang12753 ай бұрын
Thank you very much.
@dhiiable2 жыл бұрын
Very helpful... thank youuu!
@filsonhillary22182 жыл бұрын
very good even as i need multiole viewing before i can really properly understand.
@jannethalcantara57428 жыл бұрын
Good day Prof Patrick. i am new to SEM. i am really confused why are constructs drawn using ellipse while making the measurement model may become rectangles and squares while making the structural model. please help me.
@elizabethlane96877 жыл бұрын
Watch video 1 for more info
@marouared65612 жыл бұрын
Thank you very much
7 жыл бұрын
Thank you
@faruk27154 жыл бұрын
very useful thank you, watching it in x1.25 =)
@piyushgoel95294 жыл бұрын
Thanks for the suggestion mate. it really helped!
@唐蜜-n9iАй бұрын
Thanks a lot!
@sayanbanerjee31342 жыл бұрын
Everything is good. But the sections pertaining to Maximum Likelihood, Parameter Constraints, Nested Models and Model Fit needs more clarity.
@mugomuiruri2313 Жыл бұрын
good professor
@brainactivity7374 жыл бұрын
Informative and useful lecture. However, I would be careful about repeating that social scientists aren't comfortable with mathematical models. This is an unnecessary generalisation. Yes, some are not comfortable, and some are comfortable with them. That's why there are scholars that specialise in quantitative measures while others use a qualitative approach.
@reviewsoftheworld7 жыл бұрын
Thanks! Part 3 seems to be missing though?
@NCRMUK7 жыл бұрын
Hello, you can find all three parts and some supporting materials here www.ncrm.ac.uk/resources/online/SEM2016/
@reviewsoftheworld7 жыл бұрын
Thanks!
@amabelleoliva87083 жыл бұрын
Thanks for this
@cuachanhdong7 жыл бұрын
Thanks Prof Patrick!
@reyrey49202 жыл бұрын
👏👏👏
@edlithgow43605 жыл бұрын
Well, yes. Useful background to an intimidating topic. But what do you actually DO? OK, what you actually do, sadly, at least in my case, is press some buttons in a statistical package and get lots of numbers out. But what do the numbers mean? Its surprisingly hard to find out and I suspect there is quite a lot of ""Ëmperor's new clothes"" going on out there Possibly this is covered in 3 to 6. But there is apparently no 3-6
@hometruth08127 жыл бұрын
Thanks Prof!
@dr-rer-nat-jonathan6 жыл бұрын
at 1.5 speed it's still too slow and 70% of the words are ehs + Y = bX + e is not "a relationship" in general, its a very specific relationship, a linear one, i.e. it's a very very strong restriction