Thank so much. You are amazing. Ive tried all sort of materials and videos but couldn't get a better explanation like you did in this video. You are an outstanding teacher.
@justpaulo3 жыл бұрын
In the (88⁷ mod 187) it's easier if you realize that both numbers are divisible by 11, i.e. 88=8*11 and 187=17*11. So one needs to solve a much easier problem which is (8⁷ × 11⁶ mod 17) ≡ (8¹8²8⁴ × 11²11⁴ mod 17) ≡ 8(-4)(-1) × (-2)(4) mod 17 ≡ (32) × (8) mod 17 ≡ (-2) × (8) mod 17 ≡ (-16) mod 17 ≡ -(-1) mod 17 ≡ 1 mod 17. Because N = D*Q + R ⇒ R = N - D*Q. If we divided the RHS by 11, for the equation to remain true the LHS (the remainder) must be divided by 11 too. That means that if the remainder of (8⁷ × 11⁶ ÷ 17) = 1 then the remainder of (88⁷ ÷ 187) = 1 × 11. Therefore (88⁷ mod 187) ≡ 11 mod 187
@nazansari9902 Жыл бұрын
You're awesome
@v_three35934 ай бұрын
Well but the answer is 88
@selvareegan32413 жыл бұрын
sir your session is excellent.... no way to say about your session... amazing teaching ever in my life. It is helping my teaching professional. sir one request please update upcoming session soon... we are waiting..... Thank you so mauch.
@vigneshreddy12137 ай бұрын
This video is much helpful for solving modular related problems like return with mod 1000000007
@monicabattacharya64163 жыл бұрын
please upload videos of the network security daily 🙏🏼 because we are having this subject in our current semester
@earthsganaexplode5 күн бұрын
I finally understand this. Thank you!
@devpriyashivani1855 Жыл бұрын
1. 11^23 mod 187 = ? 11^1 mod 187 = 11 11^2 mod 187 = [(11^1) * (11^1)] mod 187 = (11*11) mod 187 = 121 11^4 mod 187 = [(11^2) * (11^2)] mod 187 = (121*121) mod 187 = 55 11^16 mod 187 = [(11^2) * (11^2) * (11^2) * (11^2)] mod 187 = (55*55*55*55) mod 187 = 154 11^23 mod 187 = [(11^16) * (11^4) * (11^2) * (11^1)] mod 187 = (154*55*121*11) mod 187 = 88 Ans 2. 175^209 mod 1000 = ? 175^1 mod 1000 = 175 175^2 mod 1000 = [(175^1) * (175^1)] mod 1000 = (175*175) mod 1000 = 625 175^4 mod 1000 = [(175^2) * (175^2)] mod 1000 = (625*625) mod 1000 = 625 175^8 mod 1000 = [(175^4) * (175^4)] mod 1000 = (625*625) mod 1000 = 625 175^16 mod 1000 = [(175^8) * (175^8)] mod 1000 = (625*625) mod 1000 = 625 175^32 mod 1000 = [(175^16) * (175^16)] mod 1000 = (625*625) mod 1000 = 625 175^64 mod 1000 = [(175^32) * (175^32)] mod 1000 = (625*625) mod 1000 = 625 175^128 mod 1000 = [(175^64) * (175^64)] mod 1000 = (625*625) mod 1000 = 625 175^209 mod 1000 = [(175^128) * (175^64) * (175^16) * (175^1)] mod 1000 = (625*625*625*175) mod 1000 = 375 Ans
@freakpunk8178 Жыл бұрын
how did you calculate (625*625*625*175) my calculator is not processing it🥲🥲
@samirasultanamysha1792 Жыл бұрын
@@freakpunk8178 coming zero .. why
@foxdeveloper77076 ай бұрын
for calculator sake u can change the last step to 175^209 mod 1000 = [(175^128) * (175^64) * (175^16) * (175^1)] mod 1000 = (375*375*375*175) mod 1000 = 375 Ans 625 mod 1000 == 375 mod 1000 😁
@ayushjha3303 жыл бұрын
thank you sir, you are a life saver.
@DeanLouie-t1x Жыл бұрын
Beautiful instruction. Just remember: 26/6 is 6 into 26: and 6x26 is 6 times 26, or 6 by 26.
@utilizator17013 жыл бұрын
1. 99 mod 187. 2. 375. Also, I really liked the fact that it was told to compare a and p-a mod p in order to do a fast calculation.
@YouWoWKidz Жыл бұрын
11^2 mod 187 will be -66 or 121 11^4 mod 187 will be 55 or -132 11^8 mod 187 will be 33 or -154 11^16 mod 187 will be -33 or 153 So 11^23 will be 88 or -99
@PriyankaSingh-bw9ct3 жыл бұрын
Sir, I think you should also provide answers of the homework ques …it will be easier than.
@armanlalani2 жыл бұрын
11²³ mod 187 = 88 Last 3 digits of 175²⁰⁹ = 375
@informative1802 жыл бұрын
i think it would be 625 instead of 375
@ZingatSidLive8 ай бұрын
88 or -99 1st one
@tehreem6arshad4353 жыл бұрын
please complete this lectures.
@oddipyloris53299 ай бұрын
I've been asked to solve: 78^859 mod 1829. Even after watching this video I'm having a hard time as to how to step through this problem. Any advice?
@Student_Wang2 жыл бұрын
Thank you very much
@oxtonofficial Жыл бұрын
WATCHED THIS 6 TIMES, STILL HAVE NO CLUE
@nazansari9902 Жыл бұрын
That's sad
@yegnanarayana3 ай бұрын
Will you please explain how to solve 3^5^3^5 mod35
@marzipane91822 жыл бұрын
11^23 mod 187 => 88; When i solved first i got 108; due to i used -66 instead of 121; minus confused me; at the 2nd example -> i got pretty straightforward answer -> 375; as it's everywhere 625
@YouWoWKidz Жыл бұрын
11^2 mod 187 will be -66 or 121 11^4 mod 187 will be 55 or -132 11^8 mod 187 will be 33 or -154 11^16 mod 187 will be -33 or 153 So 11^23 will be 88 or -99
@princepiyushsingh57582 жыл бұрын
Homework Question Solution: Ans. 1. (11)^23 mod 187 = 88 Ans.2. last three digit of (175)^209 will be 375
@Butcher_4 Жыл бұрын
hey i confused at last steps can i get the hw steps
@fawazhussain1186 Жыл бұрын
Best. Thanks a lot, sir.
@darkcoder65042 жыл бұрын
In video instructor says "Don't use the calculator" but i coded python program for solving example haha. python code. exp = 1 num = 88 ans = 1 while (exp != 8): ans *= num exp = exp + 1 mod = ans % 187 print(mod)
@shivasai770711 ай бұрын
Try writing for large numbers in c++ or java
@mohdehtesham83575 ай бұрын
@@shivasai7707 Segmentation error goes BRRRR
@hunorfekete74135 ай бұрын
He keeps saying don't use calculator while im seeing this to write into a calculator Anyway very good explanation
@bintech38372 жыл бұрын
1st answer is 88
@anuragdubey2852 жыл бұрын
No answer is -88 But in answer we can write 99mod187
@pujanprajaprati75332 жыл бұрын
in example 2 how you are calculating negative values ?
@Utkarshkushwaha-ld8xh2 ай бұрын
Sir you did not talk about calculation of mod ? Why
@TamiaMchunu2 ай бұрын
Thank you 💫💫💫
@nimartamandhan4319 ай бұрын
I can't get it that how are you taking the base in negative sign? and why? how did you change the value?
@silviapaolaherrerapasos54106 ай бұрын
Why do you take mod 100 in the example 29^5 (mod100 )??
@motivation_with_harsh Жыл бұрын
answer of 1st question is -> 88 answer of 2nd question is -> 375
@SagarBhanushali-r6k9 ай бұрын
11:32 how we got -51 form -551?? @neso
@ΝικοςΑνδριοπουλος-η6ν Жыл бұрын
and how exactly are we supposed so think those different strategies ourselves? apparently there is not one-size fits all
@sagarmali41792 жыл бұрын
88 and 375 are the correct answers.
@agbaiobasi739010 ай бұрын
You are correct, but how did you solve for the second one please?
@okoegualeeromosele1924 Жыл бұрын
Sir can you please point me to a website or document where I can find different practice questions?
@omkarshinde37672 жыл бұрын
1. 88, 2. 375
@ruhinpatel72573 жыл бұрын
My ans for 11^23 mod 187 is 3. Is it correct? 3 or 88mod17
@ruhinpatel72573 жыл бұрын
And my second ans is 3or - 5.. I think I am doing it wrong. Can anyone verify?
@vmarzein3 жыл бұрын
@@ruhinpatel7257 i used calculator and i got 11^23 mod 187 = 88
how can we find 30^1000 using binary exponentiation
@patelurva1055 Жыл бұрын
thnx
@vamshi.k97863 жыл бұрын
Please teach c++
@rajeshprajapati18513 жыл бұрын
It is available.
@m.p.prajwal3729 Жыл бұрын
bro how did u get -59 ?
@ZingatSidLive8 ай бұрын
And 2nd 375 😊
@antwiboasiakoemmanuel30532 жыл бұрын
Q1. 99 or -88 Q2. 375
@donthusravya20263 жыл бұрын
what is the answer for 11^23 mod 187??
@LAKSHMINARAYANANDE2 жыл бұрын
17
@harshwardhanattri41712 жыл бұрын
88
@karthimath25592 жыл бұрын
Sir why u put the last digit sum using mod 100
@arvasugupta2 жыл бұрын
3 mod 10 gives last digit of i.e 3 itself, 12 mod 10 leads 2 which is its last digit, 2457 mod 100 leads to 57 which leads to 57 as its last two digits
@kyanitekirin5178 Жыл бұрын
My brain clicked at 4:40 while I was applying this logic to a particularly difficult problem (for myself... as I've never done this before) The problem I was solving was 2116^17 mod(3233) if anyone was wondering... That was my **first** problem I tried to solve. Yes, I do hate myself.
@ashbrightsamuel23078 ай бұрын
idk where I am wrong or there is an error (5929 mod 187=12)
@ISTP-TCatboy5 ай бұрын
Do you mean that 539 mod 17 = 12
@rajeshprajapati48632 жыл бұрын
Answer to H.W : I used Simple Calculator. 1. 88 2. 375