you don't understand how helpful this video was, cos my lecturer was literally making no sense. THANK YOU!!!!!
@morbidreality49093 жыл бұрын
You are saving the world. The real avenger
@MrNb-xu7jl2 жыл бұрын
thank you. everything was literally on point. just when I wanted to ask something, you gave me the answer the next second.
@DemonSlayer-bv3nm Жыл бұрын
Finally found a good math channel in you tube ❤
@philipedekobi2972 жыл бұрын
Explained my lecturer's last 4 classes in 15.5 mins😭😂
@nilaypatil47212 жыл бұрын
😭😭😂
@srinivasviswanadhapalli80932 жыл бұрын
😂😂
@priyaparmar18862 жыл бұрын
I saw you third time today with the same comment😂
@tarupathak Жыл бұрын
Us moment🥹
@tinnyw29 ай бұрын
This is a great video, I was really struggling with understanding this concept.
@samarthtandale9121 Жыл бұрын
Seriously, this is really awesome and well thought explaination!
@thesigma37792 жыл бұрын
Best explaination till now on any channel , best channel !😇❤
@_Anna_Nass_9 ай бұрын
Thank you, Neso 🎉
@VeenaVinayaktorvi7 ай бұрын
superb explanation... wish you could teach all my msc topics...am ur fan❤
@thesaniyaatar1142 Жыл бұрын
Given a set X={2, 3, 4, 5, 6, 7, 8} then divides is a partially ordered relation on X draw the Hasse diagram of POSET where | means divides.
@chusrangagasirmarak42472 жыл бұрын
I dont understand it ,why do you use a,b instead of using some numbers given in the set S in example 1 and 2 aswell. It would be easier for viewers if use explain using those numbers
@AnilKumar-rl1kn2 ай бұрын
dear sir which platform you use to make the PPT.
@lavanjv44142 жыл бұрын
Awesome teaching ,just amazing.
@JaiBothra2 жыл бұрын
you look like a cookie if it were a human
@ramankumar41 Жыл бұрын
Nice explanation !!!
@devmallik77492 жыл бұрын
Can you give example for better understanding like in this video you gave in 11:35 min.
@RKARAN-zs5zn2 жыл бұрын
(1,1)(2,2)(3,3)(4,4)(6,6)
@pranavnyavanandi97102 жыл бұрын
Hello @Neso_Academy. I have a doubt. Here's how you defined the meaning of "partial" in Partial-Ordered-Set: The word "partial" in "partial ordering" indicates that not every pair of element in a set is comparable. And comparable means that, the pair of elements are related by the partial ordering relation, that is, "a R b" or "b R a". But then, by this definition every other type of relation, say, an equivalence relation, would also be partial. I am not saying it would be a partially ordered relation but it would be a partial equivalence relation. Why? Because, in an equivalence relation also, not every pair of elements in the set upon which the relation is defined on, are comparable. If this is the case, then partial is not a special property of a poset only but that of every relation since it does not always relate all the elements of a set. Further, every relation does the ordering of elements of a set based on some condition or rule, so what's so special or different about partial ordering? The way I see it, every relation is partial ordering of the elements of a set. Hope I have understood it right. If not, kindly clarify.
@santerisatama54092 жыл бұрын
Partial ordering is defined as 1)Reflexive, 2)Antisymmetric and 3)Transitive. Equivalence relation is symmetric, and thus not partial according to the definition. The term "partial" is used to distinguish from 'totally ordered set', where every pair is comparable, extending the definition with 4) a ≤ b or b ≤ a (strongly connected, formerly called total) to the definition. According to wiki, the informal, intuitive meaning of poset is that "Two elements x and y may stand in any of four mutually exclusive relationships to each other: either x < y, or x = y, or x > y, or x and y are incomparable." Your doubt might originate from this: on a deeper intuitive level, the simplest and most natural definition/derivation or equivalence relation comes from negation of relational operators: if A is neither more nor less than B, then A = B (in a given suitably comparable context). Note that interval from 2 to 4 is both more and less than 3 in the standard ordering of integers. Conditioning by Classical Aristotelean logic (which more or less bans "both-and" and "neither nor") has strong tendency to hide deeply intuitive relations like 'both more and less' and 'neither more nor less' from thinking. Working with intuitive and paraconsistent logics is highly recommended. :)
@starrynight35262 жыл бұрын
Amazing and make more such helpful videos👍👍👍👍
@RashidSiddiqui Жыл бұрын
nice, thanks. Good explanation.
@17Hieng2 жыл бұрын
Very clear explaination
@AbhishekThakur-fk7px Жыл бұрын
Thank you so much sir.
@user-rf4te3nx3q2 жыл бұрын
Thaaaaaank uuuu u’re a life saver
@proton37732 жыл бұрын
Just wow😌
@venkatarohitpotnuru382 жыл бұрын
thanks man:)
@AshishKumar-gl2ur2 ай бұрын
You should also explain where in the industry it is used? Why one should know about this. Just putting theory is dumb.
@betelihemwereta22682 жыл бұрын
Thank You!
@ahmetkarakartal95633 жыл бұрын
I dont understand the result in 11:23 2 divides 1 but the result is not be integer. But in the question I dont see any restriction for this
@collegematerial53483 жыл бұрын
please tell i also not understand this relation is not antisymmetric because 1 divide 2 ,2 divide 1 but 1 is not equal to 2 so how is possible to be partial order
@nava35483 жыл бұрын
@@collegematerial5348 also stuck on that 😑
@AbdullahKhan-pv1qz2 жыл бұрын
2/1=2 but 1/2 is not equal to integer.
@fezphilip70242 жыл бұрын
It's in the definition of "divides". The quotient has to be an Integer. That is, the remainder has to be zero. Otherwise every Integer can of course divide every other Integer.
@kuppi._-942 жыл бұрын
Thank you very much
@shaikchanmehboob79583 жыл бұрын
1st viewer😊
@Memes-ry7tp8 ай бұрын
what is "a" and "b" i am confused
@Abid-qp2jm Жыл бұрын
thank u bhai
@uzefaswati56372 жыл бұрын
Thank you sir
@nethajis1384 Жыл бұрын
Can any one answer. How many partial order relations are possible on set of n elements?
@_Anna_Nass_9 ай бұрын
I don’t know but good question, I’m commenting here in case someone answers it.
@yashmalve8804 Жыл бұрын
Please enable the caption or subtitles in your videos
@davekenjoplojr.266 Жыл бұрын
What is a poset? Isn't that what we usually have in our sinks where we could turn the water on and off?
@Maluda_Tech Жыл бұрын
Tf 😭😭😭😂😂
@monicabattacharya64163 жыл бұрын
please complete discrete mathematics and datastructures
@uday2159 Жыл бұрын
Had u complete ur undergraduation?
@amarnath18282 жыл бұрын
Dude thanks man arigato
@danaizadpanah12572 жыл бұрын
True hero
@maryamalizadeh1498 Жыл бұрын
Thank yooou!
@MATHEMATICALSCIENCE-__________9 ай бұрын
Let A = {1, 2,3, 4} and let R be a relation on A defined by R {(1,1), (1, 2), (2, 4), ,2), (4,3)}. Find the smallest transitive relation R* on A containing . Give explanation of this Question. PLEASE....
@manvigupta19389 ай бұрын
use warshall method to solve this by matrices
@omkarjadhav9008 Жыл бұрын
5:17 they are not antisymmetric They are Asymmetric.
@collegematerial53483 жыл бұрын
please upload function also . upload fast university exam are there safe my future it's a request