if v is an element of vector subspace W (of vector space V), then every kv is an element of U which becomes a vector subspace of V. if u&v are vectors in vector space V, then au+bv is a linear combination of u&v and its vector space W (subspace of V) is its span. In other words, set of all linear combinations of a set of vectors is the span of those vectors span of null vector space = null vector if vector space V contains S, span of S is a subspace of V subspace S of vector space V is the spanning set of V if the span of S = linear combination of vectors in S = V
@cartoonpage96963 жыл бұрын
Sir please can you provide pdfs
@utkarshshukla23402 жыл бұрын
Examples should be little bit of more realistic sense , I mean with this set of examples we are not able to conclude today's class
@Ackerman_at_cbs6 ай бұрын
In the definition of span, Vi belongs to S not R
@abhishekkataki82573 ай бұрын
Please provide notes
@desitrump Жыл бұрын
0:13
@devd_rx Жыл бұрын
wow i absolutely got horrified seeing the pdf, thankfully its correct in the video, i wonder how a phrase got removed from the pdf
@rishabhvajpayee9300 Жыл бұрын
which pdf?
@Shxvang6 ай бұрын
hey fellow redditor
@ThakursBoy Жыл бұрын
4done✓
@xyz9563 жыл бұрын
Provide pdf sir
@sekhar0182 жыл бұрын
Khud likh lo sir khud hi likh rahe hain aur kitna chahiye