Most everyday jobs really don't require you to know what these things are. If you enter any scientific/academic field, the ideas of basis and subspace show up a lot. I've also had to use these ideas when I worked at a hedge fund (when we discuss "factors" that can explain movement of a portfolio--the factors are the basis vectors and the universe of potential portfolio performances is the subspace that it should span)
@TrainPlaneBoat6 жыл бұрын
so u can span portfolios :o
@aviroxi3 жыл бұрын
@@TrainPlaneBoat *spam XD
@meshachchacha621611 ай бұрын
@@TrainPlaneBoatyes
@Deuterium529 жыл бұрын
You are such a phenomenal teacher sal. You explain things more clearly than most college professors. Linear algebra is considered abstract to us undergrads, which it is, but you illustrate things so clearly. It reminds one that mathematics is rooted in logical reasoning and natural deduction. The way you explain things, everything is logical. So thank you very much for these videos.
@GameIsMyOxygen8 жыл бұрын
Totally agree,he is one of the best teachers. Whenever i am confused about something,and if he has a video on it (which most of the time he has),by the end of the video it feels too easy. xD
@Abdul_Rehman61627 жыл бұрын
The best method of explanation. I cleared my Vector Space Concepts
@fermidirac89046 жыл бұрын
math is not logical what are you saying
@elecengrmka12 жыл бұрын
I could not understand anything in 6 classes of linear algebra in the university but few hours watching your clips have made everything crystal clear. May Allah bless you!
@MexterO12313 жыл бұрын
I have an exam on wednesday, and with your help. I am confident in answering whatever my teacher gives in the Exam. This is was the first math class I actually was sort of lost in, and you have shown me the light. From now on your my teacher for higher level math.
@RiarArt12 жыл бұрын
OMG i learned 10 times more in 19 min watching this video than in last 2 weeks of Linear Algebra classes at University xD
@nikitakundu24443 жыл бұрын
Couldn't agree more!!! I'm a 2nd time grad student and finally getting a grip on this topic!!
@abhinavkumarsingh63198 жыл бұрын
Thanks a ton from the bottom of my heart to make such amazing and outstanding videos.
@mikohayle13 жыл бұрын
No one has explained this concept better than you! Thank you for all of your videos!
@jeniferjanet48099 жыл бұрын
You the real MVP
@danielgonzalezisaiev964312 жыл бұрын
Dear Mr. Khanman, Thanks to you, I have realized that when I grow up I want to be LINEARLY INDEPENDENT!
@jerrycrazy-ko8qo17 күн бұрын
Hello Daniel, it's been 11 years now. Are you Linearly Independent?
@Silhouette9314 жыл бұрын
What your doing is setting up simultaneous equations then solving them. Earlier we were using matrices to solve simultaneous equations. Can one use matrices and the determinant to see whether these are linearly independent?
@agentoranges7 жыл бұрын
incredible. I took linear algebra last year and failed it hard. This time around, your explanations constantly make lightbulbs pop up in my mind.
@MaroLuva11 жыл бұрын
That is the clearest definition of a basis I have heard in ANY college course I've had (including a whole semester of topology after linear algebra)
@initrunlevel013 жыл бұрын
thanks mr. khan, i am ready for linear algebra quiz tomorrow :)
@rochranomajeccavea11 жыл бұрын
Thanks! i am absent for a week i our linear algebra class. :) So! thanks a lot! GODBLESS
@mdib20015 жыл бұрын
Everyone: His teaching is phenomenal. Me: He always takes good colors. ✌😎
@Ayplus13 жыл бұрын
@norwayte . I think these r vital in higher level physics, engineering and vector calculus. I dont think anyone uses these 'day to day' unless u teach it @ a university but in advanced science fields when dealing with many variables and dimensions its necessary.
@alastairzotos15 жыл бұрын
You make math fun, because it feels good when everything just clicks in my head. Seriously, you actually make it easy.
@Heisenberg83072 жыл бұрын
This is treasure man, why in the world have I missed your lectures all this time?
@zoomboy66762 жыл бұрын
All I can say is THANK YOU!!!!!!!!! You are the best prof for explaining linear algebra. Period
@tis_i_sana2 жыл бұрын
Just a note: at 06:55 when he checks if they span R2 and then if they are linearly independant; this part is a little excessive. We can achieve the same thing by only checking if they are linearly independant and if they are then they must span R2
@rdzdrd010 жыл бұрын
Khan saves the day again!
@yarashamali80618 жыл бұрын
his voice
@keziah97983 жыл бұрын
hi, i just wanna say thank you for the video, it helps me understand better than my professor and my textbook
@jonathansweet22304 жыл бұрын
Thank you for helping me figure things out!
@DocMaple814 жыл бұрын
You, sir, are a godsend. And I'm not even religious. Thank you
@norwayte15 жыл бұрын
Thanks. That's what i wanted to hear. - Sounds like analogies of ideas. Even better - patterns of ideas which fit in every subject of human life. In this case... take something of something bigger, make assumptions about it, act with these assumptions and maybe you get a result that you can use for.. for instance to bring in more light in this "something bigger". Or anything else. Ideas are ideas are ideas. In this case they are mathematical... Keep on going.
@SuperStar-ql5cs4 жыл бұрын
The lecturer is of Bangladeshi origin just like one of the co-founders of You Tube. That is one of the reasons why he is so good.
@TravisLRoss14 жыл бұрын
Sal, just wanted to say thanks. I have been using these videos for understanding how to do singular value decomposition in my graduate level cognitive science course. This sort of stuff appears when modeling how the brain might process information retrieval and how search engine algorithms work. It is definitely not my favorite section of the class, because LA is conceptually hard if you have never seen it before. I am going to recommend these be included in our syllabus for future students.
@denett0111 жыл бұрын
There is a linear algebra playlist with all the videos in order on his channel. This video is number 20.
@tuoyazhuo80636 жыл бұрын
The video explains the subject matter very well. However, when solving for the vector equation @7:20 (or when determining if the equation has a trivial solution), I think it is better to use augmented matrix instead of plain equations...
@mdrakibhossain24333 жыл бұрын
You did a great job man.Fully understand the concept just in a few minutes which i didn’t in the whole last few years.
@s4ms4r412 жыл бұрын
Shame our world doesn't financially reward people who do such amazing work. Imagine, if he went to Goldmansachs making complex crazy market products he could make a lot more money!
@Indianbutler8 жыл бұрын
Thank you Sal:)! If only professors could explain and teach as you do. Again thank you so much for all the video
@nasifhossain34414 жыл бұрын
The best video for understanding what the basis is!
@3hz3zv4eey6v13 жыл бұрын
This is better than my professor, textbook, and classmates combined. Thank you.
@lhyx199013 жыл бұрын
Every computer science student who wanna make awesome 3d games should definitely check this out. Best Linear Algebra tutorial ever!!!
@bjarktron11 жыл бұрын
I think my professor tries to make this as complicated as humanly possible with his explanations... thanks for the simplicity!
@allthingsacoustic13 жыл бұрын
Thank you for this video!! You just clarified a topic for me that had me completely lost.
@JesseDCrespo12 жыл бұрын
From what I understand, you only need two in a plane basis, but a three dimensional basis would need a third vector, a four dimensional basis would need a fourth etc..
@ruidechen9 жыл бұрын
Based khan academy! Finally understand this, not the abstract definition but actual examples and explanations :) If I only found you before my mid terms :(
@Cliff8610 жыл бұрын
You should've mentioned that the basis of R^n will always only contain n vectors
@Sporky000010 жыл бұрын
Thank you for mentioning this! I was wondering if the minimum number of vectors that forms a basis was 2, but now I see it depend on the dimension.
@hadisyed112 жыл бұрын
I would gladly donate whatever amount you require to get the best tablet out there. So that you may continue to enrich our lives with your undeniable gift of teaching the most abstract and unwieldy concepts in the simplest manner.
@dhruvbhati13473 жыл бұрын
Isn't it true that if we prove vectors v1 and v2 independent then it will automatically prove that they cover span R2, and vice versa? If so then we don't need to solve it 2 times
@mrbriadis3 жыл бұрын
what tools do you use to create this videos? How do you make sure we can track your 'pencil' ? I'd love to use this for my online teaching. Thanks for sharing these videos btw! learned a lot from them
@GeekBoy0313 жыл бұрын
I wish there are links to previous and next video in a series
@Rovshenification9 жыл бұрын
I'm a lazy to research something about Basis or anything about that but I think if I will watch your all lessons I will be lazy as always because everything is about linear algebra is in your channel. This is enough for me to do not any research about anything. Just click your channel and enjoy :D Thanks a lot!
@metalninjadragon15 жыл бұрын
These are awesome, especially for a grad student in controls (yes another one) who is suddently smacked in the face with algebra symbols he hasn't seen in 10 years. Why don't you mention the connection between linear independence and the determinent though?
@JosephHarner12 жыл бұрын
That would be entirely to effective, logical, and cost-efficient for any university to consider implementing.
@FileMaker_Consultant14 жыл бұрын
Got a question. If you have a 3x4 matrix and after row-reducing there are 3 pivot columns, leaving behind one free variable. Will it be a basis for R3?
@sudupati14 жыл бұрын
Absolutely brilliant Sir. no more words to describe...
@fuahuahuatime519611 жыл бұрын
For real... I love how this guy teaches. Thank you so much.
I've got this in my finals tomorrow, and need to re-learn the whole topic because it's been a few years since I've last done it.. Thanks for this :)
@de_naenae13 жыл бұрын
@khanacademy for work, or not for work. I'd still learn this. It's interesting.
@dawagyel13 жыл бұрын
thank you so much... u have always been life saver for me.. u are really the best
@crumcon15 жыл бұрын
you know alot about math Khan
@PwNStaaRR13 жыл бұрын
Great video. Just a little confused on how to know if they are generating system of R^2 or R^3 and whether they are bases of R^2 or R^3? Can anyone answer please!
@onewashere13 жыл бұрын
@TheGiglfoosm You have just described every one of my classes.
@LiLJayMac12 жыл бұрын
I'm not an advertise guy or anything for him, but! It just sounds like a lot of people who are watching this aren't aware that he has a site with all his videos nicely organised and whatnot ... Figured I'd pass it on, cause his videos have helped me in my math courses as well (calc, chem, alg, etc ...) Just Google Khan Academy, and it's the first one that pops up.
@pubududarshana48832 жыл бұрын
Thank You. You are great.
@mentld13 жыл бұрын
Thank you! This helps me so much :) The videos themselves are great but would it be possible for the episodes to be number-ordered or could quotes and such be linked to previous episodes? KZbin doesnt show videos in correct order.. Anyways thanks so much and sorry for my english :D
@fspopshovit12 жыл бұрын
Thanks for these video's, they helped me a whole bunch! Too bad I found them so late, my exam is in 2 days! Keep up the good work though
@janitarjanitar14 жыл бұрын
your the man Sal.
@omerbirinci16916 жыл бұрын
Thank you. Very clear explanation about relation between span and basis.
@josephdamen6207 жыл бұрын
You the man Khan
@debasishkalita39627 жыл бұрын
you are great sir, when you say about the last video,can you provide the link as well sir?
@greenapplefever15 жыл бұрын
These are great videos. Excellent job.
@kristkir13 жыл бұрын
Great video, I feel like they should get rid of the useless lecturers and just play these videos in my algebra class.
@strwbrryshrtcke14 жыл бұрын
Thank you soooo much, this helped alot! You made it so easy to understand too
@Incrue12 жыл бұрын
Sal, you rock.There's a chance you make videos of electronics or mechatronics? Thank you very VERY much
@MrMaarij11 жыл бұрын
God bless you good sir...God bless you...
@hardtunesbigvibes14 жыл бұрын
thanks.great explaination
@Cyberpunk64414 жыл бұрын
never went to linear algebra class. cause prof sucks so bad.. you sir are the best!!!!!!!!!!!
@KhoaNguyen-jn1vr Жыл бұрын
thanks for your lecture a lot
@vrchacho13 жыл бұрын
@norwayte Computer graphics won't have gotten anywhere without this.
@Xlaxsauce15 жыл бұрын
your the man Sal
@smhassanr14 жыл бұрын
i appreciate this so much, thank you khanacademy
@elenaorins52846 жыл бұрын
Because I cannot find a video, is there a video on extending a basis? Thanks a lot for the video by the way! My college hates using matrices
@kamrannasir387112 жыл бұрын
Is there no need for any third vector to be there to form a basis. Here we see that only two vectors are sufficient to form a basis.
@harrietrj958 жыл бұрын
Question: If the set S is not linearly independent, you can still have a span V of it but it is not a basis, but if the set S is linearly independent, then the span of that particular set S is a subspace of V and it is a basis?
@MuffinsAPlenty7 жыл бұрын
That is correct.
@Niharikajain728286 жыл бұрын
Yes Yes what you said is correct and important for better understanding
@raulmayers20726 жыл бұрын
If the set S is not linearly independent meaning it is linearly dependent it can't be a basis for V but isn't it the span of S still a subspace of V?? It is just all the linear combinations of the vectors in V, so if V is a subspace wouldn't span(s) also have to be a subspace of V?
@sickpee13 жыл бұрын
Given a set of linearly dependent vectors, how would I determine which of those vectors I can "kick out" - so to speak - to get a basis for the space spanned by that set?
@DavidDouglasJr2 жыл бұрын
I find this video much more enjoyable at 1.5X. Its ironic that this video is so redundant!!!
@Helping.aspirant5 жыл бұрын
Thanks bery much
@kyleblosser51411 жыл бұрын
@kingroy2377 basically, the vector is still in R^2 since it is a column vector with i and j components, thus making it two dimensional. The vector would be in R^3 if it were, for example, [2 3 1], since that has three components [i j k], rather than two components [i j], or [1 0] in this example
@aniketpanda93024 жыл бұрын
Sir can you please make a video on finite basis and infinite basis with examples(especially polynomials).
@Maibes13 жыл бұрын
this guy rocks my world
@statushood15 жыл бұрын
great video!! thank you!
@catalinamaria925312 жыл бұрын
This Mr just saved my butt
@ShanieMyrsTear12 жыл бұрын
Question on the basis of a subspace. I see in this video we are using Basis' to find Spans. However, I don't see in the video how to find the basis itself?
@johnbo74334 жыл бұрын
This is 10 times better than my college professor
@ArchilonValdir9 жыл бұрын
Thanks for this! I really needed a refresher!
@irombebekanandameetei9256 жыл бұрын
Definitely i love ur videos sir.
@azrnzala10 жыл бұрын
great video to jog my memory :) thanks.
@hongly131812 жыл бұрын
omg...you've saved my life.........!!
@Duxaization5 жыл бұрын
17:30 Summary
@kanishka47511 жыл бұрын
Thanks a lot.
@khalidteama24417 жыл бұрын
Amazing.... thanks you very very much!!!!!
@khalidteama24417 жыл бұрын
Everything makes perfect sense now... spent all day trying to understand my lesson until I came across this. Cant thank you enough!!