4:21 I feel like I've said this before, but whatever. To me, this just screams Fourier transform. With the cosine, you have the real part of the inverse Fourier transform evaluated at t=1, with the original function being e^-2|t|, with its transform being 4/(w^2+4). By playing with the constants to make it for with the inverse Fourier transform, you get pi/2 time the original function at t=1, which is the result you got to via contouring.
@maths_5057 ай бұрын
Like I said .....FOR MINAS TIRITH!!!!
@Sugarman967 ай бұрын
@@maths_505 You get me there
@brenobelloc86177 ай бұрын
@@maths_505 the greatest reason to solve that.
@leroyzack2657 ай бұрын
I see everyone proposed so many ways to reach the result but I think contour integration remains one of the best tools for solving hard integrals.
@maths_5057 ай бұрын
Hard integrals: (exist) Contour integration: GO BACK TO THE SHADOWS! FLAME OF UDÛN!!!
@leroyzack2657 ай бұрын
@@maths_505 it simply annihilate that seeming hardness as fire reduces wood to aches.
@primenumberbuster4047 ай бұрын
Hey, we did this in complex Analysis last year!!!! 😮
@florianc25987 ай бұрын
For the hw I find pi/(sqrt(2)*exp(sqrt(2))
@krisbrandenberger5447 ай бұрын
Yes. The process is pretty much the same as in the problem given in the video. Completing the square in the denominator and applying the same u-sub will result in u^2+4.
@balubaluhehe20027 ай бұрын
could you do a video on how and why contour integration and the residue theorem works?
@maxvangulik19887 ай бұрын
i would like to see such a video. I'm still unclear on what a laurent series is.
@MikeB-q8v7 ай бұрын
Ingenious as always!
@danielespinosa8697 ай бұрын
Answer 13:21 is pi/((sqrt(2)*e^(sqrt(2)))
@DD-ce4nd7 ай бұрын
A nice generalisation is: int_0^infty cos(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2,1-n/2},{}, -1/4) / (2^n*( n/2-1)!) for n>0 and an even integer. Also, int_0^infty sin(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2-1/2,3/2-n/2},{}, -1/4) / (2^n*( n/2-1/2)!) for n > 0 and an odd integer. (both equations multiplied by Pi/e^2)
@ben_adel34377 ай бұрын
After the cos(x)/x^2+4 part i stopped understanding what's happening but someday i do wanna learn about the integral for complex functions
@BoringExtrovert7 ай бұрын
How exactly does one choose the contour? Every time I see such integrals, I don’t understand why such a contour is chosen
@Khamul76187 ай бұрын
You are free to choose the most convenient one. Usually you choose the contour so that it contains a single pole. And having convenient parametrization is also nice -- arcs are easily parametrized as z=rho e^(i phi) which simplifies estimation of the integral (you want any additional integrals equal zero). In fact, there is no simple answer to your question. You just try one contour and if it doesn't help you evaluate your integral you try another one. The more experience you have, the more often your guesses will be correct. Integrals are always just like this.
@yodastar12377 ай бұрын
Because Contour usually for this case considers the geometry of the integral like in previous problem. So like in this form you see, you will get an answer that involve pi or e or something like that due to the radians and symmetry.
@ahmedlutfi48946 ай бұрын
What is the reason behind reversing the integral interval when changing the realm of x 1/x?
@qetzing7 ай бұрын
Regarding 0:42, what exactly is the difference between a transformation as shown here and a regular substitution with u?
@maths_5057 ай бұрын
No difference whatsoever
@MrWael19707 ай бұрын
Thanks for smart tricks for solving such integrals. It should be possible to be solved in real domain rather than contour integration.
@slavinojunepri76487 ай бұрын
Excellent
@theelk8017 ай бұрын
love me a good contour integral
@gregoriuswillson41537 ай бұрын
Hello sir thank u so much for giving us such a quality content , could u post discussion regarding glasser master theorem i think it will be interesting .Thanks
@appybane84817 ай бұрын
Answer for homework: pi/(2e^sqrt2)
@rishabhshah87547 ай бұрын
I have been trying to solve int^1_0 ln(1-x)/x dx without using the fact that ζ(2) = π^2/6. Is this possible?
@PritamMondal-ps4cu7 ай бұрын
Bro may I know what books do you follow for complex analysis...like intregals including branch cuts and branch points ?
@maths_5057 ай бұрын
Complex analysis by gamelin is a classic
@PritamMondal-ps4cu7 ай бұрын
@@maths_505 thanks for replying
@larinzonbruno91267 ай бұрын
Gorgeous way to solve! Hail Kamal, thundermind of Lothlorien!!. Kamal, I think that I noticed in the first transformation from x to 1/x, you have the negative of the limit switch, another from the cos function symmetry, another from the differential element dx, is that correct?
@maths_5057 ай бұрын
The cos function is even so we don't get a negative from there my friend.
@larinzonbruno91267 ай бұрын
@@maths_505 thank you! I understood the opposite, my respect! Thundermind of Lothlorien!
@abdealrazakmekebret63857 ай бұрын
Wonderful professor, really wonderful. Please, professor, how can I reach this level of skill? Advise me what i should stady
@maths_5057 ай бұрын
Just keep doing math and you'll probably end up better than me
@abdealrazakmekebret63857 ай бұрын
@@maths_505 Thank you sir and thank you for your humility Thank you, I hope that God will guide you to Islam
@davode761667 ай бұрын
Why don't you do double and triple integrals? They are quite interesting!🎉
@2kchallengewith4video7 ай бұрын
You must be new here
@maths_5057 ай бұрын
I've done plenty. One quite recently
@renerpho7 ай бұрын
@@maths_505 Do all of them
@Samir-zb3xk7 ай бұрын
if im being completely honest i have no clue how to do complex analysis but I got the same result using laplace transform lol
@maths_5057 ай бұрын
The Laplace transform is a subject of complex analysis.
@Samir-zb3xk7 ай бұрын
@@maths_505yea i meant the stuff you were doing with poles and contours, i learned laplace transform when studying differential equations
@holyshit9227 ай бұрын
Two substitutions u = 1/x and v = u-1/u gave me integral \int_{0}^{\infty}{\frac{cos(v)}{v^2+4}dx} which can be calculated fe with Laplace transform You did it for integral which looks almost the same kzbin.info/www/bejne/mJ69oIN_m79_qdk
@Jalina697 ай бұрын
❤
@giuseppemalaguti4357 ай бұрын
Fino al 5 Min è semplice...poi non conosco quelle soluzioni..il risultato arriva anche con feyman
@petterituovinem84127 ай бұрын
29th
@maxvangulik19887 ай бұрын
I=int[0,♾️](cos(x-1/x)/(x+1/x)^2)dx x-1/x=u x+1/x=sqrt(u^2+4) x=(u+sqrt(u^2+4))/2 du=(1+1/x^2)dx=(x+1/x)dx/x x->♾️, u->♾️ x->0, u->-♾️ I=1/2•int[-♾️,♾️]((u+sqrt(u^2+4))cos(u)/(u^2+4)^(3/2))du I1=1/2•int[-♾️,♾️](ucos(u)/(u^2+4)^(3/2))du I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du I=I1+I2 U=cos(u) dV=(u/(u^2+4)^(3/2))du dU=-sin(u) V=-(u^2+4)^-1/2 I1=-1/2•int[-♾️,♾️](sin(u)/sqrt(u^2+4))du odd•even=odd, so I1=0 I=I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du even•even=even, so I=int[0,♾️](cos(u)/(u^2+4))du b=u/2 db=du/2 I=1/2•int[0,♾️](cos(2b)/(b^2+1))db cos(x)=sum[n=0,♾️](x^(2n)/(2n)!) I=1/2•int[0,♾️](sum[n=0,♾️]((2b)^(2n)/((2n)!(b^2+1))))db I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,♾️](b^(2n)/(b^2+1))db) O=b A=1 H=sqrt(b^2+1) tan(Ø)=b sec^2(Ø)=1/(b^2+1) sec^2(Ø)dØ=db I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,pi/2](sin^2n(Ø)cos^-(2n+4)(Ø))dØ) int[0,pi/2](sin^(2u-1)(x)cos^(2v-1)(x))dx=ẞ(u,v) I=sum[n=0,♾️](2^(2n-1)ẞ(n+1/2,n+5/2)/(2n)!) ẞ(u,v)=gamma(u)gamma(v)/gamma(u+v) ẞ(n+1/2,n+5/2)=gamma(n+1/2)gamma(n+5/2)/gamma(2n+3) =(n+3/2)(n+1/2)gamma^2(n+1/2)/gamma(2n+3) I=pi/2•sum[n=1,♾️]((2n^2+n)(n-1)!!^2)/((2n)!^2)) I=pi/2•sum[n=0,♾️]((2n^2+5n+3)n!!^2/(2n+2)!^2) im not up to snuff on my double-factorial-squared sums, so I'll just watch the video now
@zunaidparker7 ай бұрын
This video has 69 likes at the moment. I'm so conflicted...