one of the best integrals you'll solve

  Рет қаралды 6,356

Maths 505

Maths 505

Күн бұрын

Пікірлер: 55
@zunaidparker
@zunaidparker 7 ай бұрын
One of the best integrals we'll watch YOU solve 😉
@CM63_France
@CM63_France 7 ай бұрын
Hi, "Terribly sorry about that" : 2:43 , 6:44 , 11:01 , "ok, cool" : 4:51 , 5:00 , 6:00 , 10:32 , 11:05 , 12:08 .
@JustSomePersonOnline
@JustSomePersonOnline 7 ай бұрын
Guys i think he's terribly sorry about that
@Sugarman96
@Sugarman96 7 ай бұрын
4:21 I feel like I've said this before, but whatever. To me, this just screams Fourier transform. With the cosine, you have the real part of the inverse Fourier transform evaluated at t=1, with the original function being e^-2|t|, with its transform being 4/(w^2+4). By playing with the constants to make it for with the inverse Fourier transform, you get pi/2 time the original function at t=1, which is the result you got to via contouring.
@maths_505
@maths_505 7 ай бұрын
Like I said .....FOR MINAS TIRITH!!!!
@Sugarman96
@Sugarman96 7 ай бұрын
@@maths_505 You get me there
@brenobelloc8617
@brenobelloc8617 7 ай бұрын
​@@maths_505 the greatest reason to solve that.
@leroyzack265
@leroyzack265 7 ай бұрын
I see everyone proposed so many ways to reach the result but I think contour integration remains one of the best tools for solving hard integrals.
@maths_505
@maths_505 7 ай бұрын
Hard integrals: (exist) Contour integration: GO BACK TO THE SHADOWS! FLAME OF UDÛN!!!
@leroyzack265
@leroyzack265 7 ай бұрын
@@maths_505 it simply annihilate that seeming hardness as fire reduces wood to aches.
@primenumberbuster404
@primenumberbuster404 7 ай бұрын
Hey, we did this in complex Analysis last year!!!! 😮
@florianc2598
@florianc2598 7 ай бұрын
For the hw I find pi/(sqrt(2)*exp(sqrt(2))
@krisbrandenberger544
@krisbrandenberger544 7 ай бұрын
Yes. The process is pretty much the same as in the problem given in the video. Completing the square in the denominator and applying the same u-sub will result in u^2+4.
@balubaluhehe2002
@balubaluhehe2002 7 ай бұрын
could you do a video on how and why contour integration and the residue theorem works?
@maxvangulik1988
@maxvangulik1988 7 ай бұрын
i would like to see such a video. I'm still unclear on what a laurent series is.
@MikeB-q8v
@MikeB-q8v 7 ай бұрын
Ingenious as always!
@danielespinosa869
@danielespinosa869 7 ай бұрын
Answer 13:21 is pi/((sqrt(2)*e^(sqrt(2)))
@DD-ce4nd
@DD-ce4nd 7 ай бұрын
A nice generalisation is: int_0^infty cos(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2,1-n/2},{}, -1/4) / (2^n*( n/2-1)!) for n>0 and an even integer. Also, int_0^infty sin(1-1/x) \(x+1/x)^n dx becomes 2F0( {n/2-1/2,3/2-n/2},{}, -1/4) / (2^n*( n/2-1/2)!) for n > 0 and an odd integer. (both equations multiplied by Pi/e^2)
@ben_adel3437
@ben_adel3437 7 ай бұрын
After the cos(x)/x^2+4 part i stopped understanding what's happening but someday i do wanna learn about the integral for complex functions
@BoringExtrovert
@BoringExtrovert 7 ай бұрын
How exactly does one choose the contour? Every time I see such integrals, I don’t understand why such a contour is chosen
@Khamul7618
@Khamul7618 7 ай бұрын
You are free to choose the most convenient one. Usually you choose the contour so that it contains a single pole. And having convenient parametrization is also nice -- arcs are easily parametrized as z=rho e^(i phi) which simplifies estimation of the integral (you want any additional integrals equal zero). In fact, there is no simple answer to your question. You just try one contour and if it doesn't help you evaluate your integral you try another one. The more experience you have, the more often your guesses will be correct. Integrals are always just like this.
@yodastar1237
@yodastar1237 7 ай бұрын
Because Contour usually for this case considers the geometry of the integral like in previous problem. So like in this form you see, you will get an answer that involve pi or e or something like that due to the radians and symmetry.
@ahmedlutfi4894
@ahmedlutfi4894 6 ай бұрын
What is the reason behind reversing the integral interval when changing the realm of x 1/x?
@qetzing
@qetzing 7 ай бұрын
Regarding 0:42, what exactly is the difference between a transformation as shown here and a regular substitution with u?
@maths_505
@maths_505 7 ай бұрын
No difference whatsoever
@MrWael1970
@MrWael1970 7 ай бұрын
Thanks for smart tricks for solving such integrals. It should be possible to be solved in real domain rather than contour integration.
@slavinojunepri7648
@slavinojunepri7648 7 ай бұрын
Excellent
@theelk801
@theelk801 7 ай бұрын
love me a good contour integral
@gregoriuswillson4153
@gregoriuswillson4153 7 ай бұрын
Hello sir thank u so much for giving us such a quality content , could u post discussion regarding glasser master theorem i think it will be interesting .Thanks
@appybane8481
@appybane8481 7 ай бұрын
Answer for homework: pi/(2e^sqrt2)
@rishabhshah8754
@rishabhshah8754 7 ай бұрын
I have been trying to solve int^1_0 ln(1-x)/x dx without using the fact that ζ(2) = π^2/6. Is this possible?
@PritamMondal-ps4cu
@PritamMondal-ps4cu 7 ай бұрын
Bro may I know what books do you follow for complex analysis...like intregals including branch cuts and branch points ?
@maths_505
@maths_505 7 ай бұрын
Complex analysis by gamelin is a classic
@PritamMondal-ps4cu
@PritamMondal-ps4cu 7 ай бұрын
@@maths_505 thanks for replying
@larinzonbruno9126
@larinzonbruno9126 7 ай бұрын
Gorgeous way to solve! Hail Kamal, thundermind of Lothlorien!!. Kamal, I think that I noticed in the first transformation from x to 1/x, you have the negative of the limit switch, another from the cos function symmetry, another from the differential element dx, is that correct?
@maths_505
@maths_505 7 ай бұрын
The cos function is even so we don't get a negative from there my friend.
@larinzonbruno9126
@larinzonbruno9126 7 ай бұрын
@@maths_505 thank you! I understood the opposite, my respect! Thundermind of Lothlorien!
@abdealrazakmekebret6385
@abdealrazakmekebret6385 7 ай бұрын
Wonderful professor, really wonderful. Please, professor, how can I reach this level of skill? Advise me what i should stady
@maths_505
@maths_505 7 ай бұрын
Just keep doing math and you'll probably end up better than me
@abdealrazakmekebret6385
@abdealrazakmekebret6385 7 ай бұрын
@@maths_505 Thank you sir and thank you for your humility Thank you, I hope that God will guide you to Islam
@davode76166
@davode76166 7 ай бұрын
Why don't you do double and triple integrals? They are quite interesting!🎉
@2kchallengewith4video
@2kchallengewith4video 7 ай бұрын
You must be new here
@maths_505
@maths_505 7 ай бұрын
I've done plenty. One quite recently
@renerpho
@renerpho 7 ай бұрын
@@maths_505 Do all of them
@Samir-zb3xk
@Samir-zb3xk 7 ай бұрын
if im being completely honest i have no clue how to do complex analysis but I got the same result using laplace transform lol
@maths_505
@maths_505 7 ай бұрын
The Laplace transform is a subject of complex analysis.
@Samir-zb3xk
@Samir-zb3xk 7 ай бұрын
​@@maths_505yea i meant the stuff you were doing with poles and contours, i learned laplace transform when studying differential equations
@holyshit922
@holyshit922 7 ай бұрын
Two substitutions u = 1/x and v = u-1/u gave me integral \int_{0}^{\infty}{\frac{cos(v)}{v^2+4}dx} which can be calculated fe with Laplace transform You did it for integral which looks almost the same kzbin.info/www/bejne/mJ69oIN_m79_qdk
@Jalina69
@Jalina69 7 ай бұрын
@giuseppemalaguti435
@giuseppemalaguti435 7 ай бұрын
Fino al 5 Min è semplice...poi non conosco quelle soluzioni..il risultato arriva anche con feyman
@petterituovinem8412
@petterituovinem8412 7 ай бұрын
29th
@maxvangulik1988
@maxvangulik1988 7 ай бұрын
I=int[0,♾️](cos(x-1/x)/(x+1/x)^2)dx x-1/x=u x+1/x=sqrt(u^2+4) x=(u+sqrt(u^2+4))/2 du=(1+1/x^2)dx=(x+1/x)dx/x x->♾️, u->♾️ x->0, u->-♾️ I=1/2•int[-♾️,♾️]((u+sqrt(u^2+4))cos(u)/(u^2+4)^(3/2))du I1=1/2•int[-♾️,♾️](ucos(u)/(u^2+4)^(3/2))du I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du I=I1+I2 U=cos(u) dV=(u/(u^2+4)^(3/2))du dU=-sin(u) V=-(u^2+4)^-1/2 I1=-1/2•int[-♾️,♾️](sin(u)/sqrt(u^2+4))du odd•even=odd, so I1=0 I=I2=1/2•int[-♾️,♾️](cos(u)/(u^2+4))du even•even=even, so I=int[0,♾️](cos(u)/(u^2+4))du b=u/2 db=du/2 I=1/2•int[0,♾️](cos(2b)/(b^2+1))db cos(x)=sum[n=0,♾️](x^(2n)/(2n)!) I=1/2•int[0,♾️](sum[n=0,♾️]((2b)^(2n)/((2n)!(b^2+1))))db I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,♾️](b^(2n)/(b^2+1))db) O=b A=1 H=sqrt(b^2+1) tan(Ø)=b sec^2(Ø)=1/(b^2+1) sec^2(Ø)dØ=db I=sum[n=0,♾️](2^(2n-1)/(2n)!•int[0,pi/2](sin^2n(Ø)cos^-(2n+4)(Ø))dØ) int[0,pi/2](sin^(2u-1)(x)cos^(2v-1)(x))dx=ẞ(u,v) I=sum[n=0,♾️](2^(2n-1)ẞ(n+1/2,n+5/2)/(2n)!) ẞ(u,v)=gamma(u)gamma(v)/gamma(u+v) ẞ(n+1/2,n+5/2)=gamma(n+1/2)gamma(n+5/2)/gamma(2n+3) =(n+3/2)(n+1/2)gamma^2(n+1/2)/gamma(2n+3) I=pi/2•sum[n=1,♾️]((2n^2+n)(n-1)!!^2)/((2n)!^2)) I=pi/2•sum[n=0,♾️]((2n^2+5n+3)n!!^2/(2n+2)!^2) im not up to snuff on my double-factorial-squared sums, so I'll just watch the video now
@zunaidparker
@zunaidparker 7 ай бұрын
This video has 69 likes at the moment. I'm so conflicted...
@mutenfuyael3461
@mutenfuyael3461 7 ай бұрын
Fool of you to think I'll solve this integrale
@arkadelik
@arkadelik 7 ай бұрын
real okay cool moment
A surprisingly interesting integral
10:17
Maths 505
Рет қаралды 19 М.
This is one of the coolest integrals ever solved
9:00
Maths 505
Рет қаралды 9 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Germany | Can you solve this? | Math Olympiad
8:39
Master T Maths Class
Рет қаралды 7 М.
A special non linear differential equation
12:56
Maths 505
Рет қаралды 5 М.
Integration Is Easy, Actually
7:29
exp(ert)
Рет қаралды 15 М.
MM88: rectangular contour integration
25:22
Learn Physics with Dr. Viv!
Рет қаралды 6 М.
What's the biggest number you can think of...?
8:29
Pizza Man Joe
Рет қаралды 18 М.
Every Unsolved Math problem that sounds Easy
12:54
ThoughtThrill
Рет қаралды 804 М.
The trig integral of your dreams (or nightmares)
14:34
Maths 505
Рет қаралды 8 М.
An extremely captivating double integral
20:35
Maths 505
Рет қаралды 7 М.
Climbing past the complex numbers.
30:31
Michael Penn
Рет қаралды 140 М.