Omg when u made your cellphone say ostrogradski and then you said method i laughed so hard! Never heard of that method, mind blowing!
@blackpenredpen7 жыл бұрын
santiago parra naranjo Hahahhahahahha. I like your comment!! Finally someone mentions about the iPhone. Hahahaha
@TheGeneralThings7 жыл бұрын
Definitely my favourite method! Not as easy as trig sub, but wayyyy more mind-blowing.
@mmunier9477 жыл бұрын
I just needed that for a Fourier transform proof and couldn't wrap my head around it Nice timing thanks!
@neelu_166 жыл бұрын
MMunier watch 3b1b for fourier intuition
@mikenw2557 жыл бұрын
I just found this channel recently. You are very excellent and also entertaining. I wish I had you for a teacher when I was in college, I might have learned more. Thank you for your effort! Also ignore the detractors!
@blackpenredpen7 жыл бұрын
Mike W I am really happy to receive your nice comment. Thank you, Mike!
@holyshit9227 жыл бұрын
This method can be useful if 1) we dont have factorization of denominator (to find gcf we use successive divisions) 2) we dont know how to calculate trig integrals or forget some trig identities 3) we like partial fraction decomposition and we want to simplify integral before use this decomposition 4) we get integral from Euler or Weierstrass substitution
@NoNameAtAll27 жыл бұрын
can you tell more about successive devisions?
@holyshit9227 жыл бұрын
In this example you have Q(x)and Q'(x) do the long division and remember the remainder R_{1}(x) and then take Q'(x) and R_{1}(x) to the next step (deg Q'(x)< deg Q(x) and that is why you choose Q'(x) to the next step) repeat this steps until remainder is some constant if it is zero last divisor is your gcf Maybe blackpenredpen will give you better explanation Do you know Euclid's algorithm with division for numbers ? This is similar
@MujiburRahman-xk6vv4 жыл бұрын
The instructor is awesome. He should be commended for his excellent explanation of this beautiful method.
@tarat.techhh7 жыл бұрын
it was actually cool the way you fast forwarded the video
@martinzone81537 жыл бұрын
Excellent. Just how the heck Ostrogradsky did come to that method?
@peppybocan7 жыл бұрын
That's some Russian math school :D
@holyshit9227 жыл бұрын
Key observation which allows you to derive this method is that rational part of integral appears if denominator has repeated roots (real or complex)
@vyz3337 жыл бұрын
Amazing video! . Peyam's cameo at 2:53 made my day.
@anatomania11267 жыл бұрын
use the Chen Lu
@shivanshnigam401510 ай бұрын
Nah, we gotta use lu Chen here
@mohan153doshi7 жыл бұрын
Great way of doing this integral - and your teaching was uber cool - :)
@blackpenredpen7 жыл бұрын
mohan153doshi thank you!!!!!!
@adetokunboarogbonlo24917 жыл бұрын
Great video blackpenredpenbluepen. Pls add the link to ``use the Chen Lu!``
@blackpenredpen7 жыл бұрын
Adetokunbo Arogbonlo It's here on Dr. Peyam's channel! kzbin.info/www/bejne/b6PCZ52Cod2mmsU
@holyshit9227 жыл бұрын
I think that another one example for this method will be useful , an example which shows advantages of this method when we have not given factorization of denominator explicitly
@asifalamjoy95306 жыл бұрын
You are a wizard . Thank a lot man
@jameswilson82707 жыл бұрын
I've never seen this. Awesome video.
@blackpenredpen7 жыл бұрын
James Wilson thanks!!!
@thephysicistcuber1757 жыл бұрын
Finally a method that I legit didn't know :)
@holyshit9222 жыл бұрын
In my opinion this method can be simplified First calculate Q_{1}(x) = GCD(Q(x),Q'(x)) It can be done two ways 1) using factorization of Q(x) 2) using Euclidean algorithm for polynomials Then calculate Q_{2}(x) = Q(x)/Q_{1}(x) Calculate auxiliary polynomial H(x) = Q_{2}(x)Q_{1}'(x)/Q_{1}(x) Assume that degree of each numerator are strictly less than degree of corresponding denominator Solve system of linear equations written from equation below P(x) = P_{1}'(x)Q_{2}(x) - P_{1}(x)H(x) + P_{2}(x)Q_{1}(x) For an exercise prove that H(x) always be a polynomial
@KeyMan1377 жыл бұрын
7:52 - 9:05 was my favorite part. Cat > Bunny > Oreo
@ogusqiu69263 жыл бұрын
so when do we use ostrogradski's method over trig sub and partial fractions?
@thecorpooration3 жыл бұрын
This video is amazing! Thank you!
@lkxemmeji75887 жыл бұрын
Привет красный фломастер чёрный фломастер ! Классное видео с музыкальной паузой :)
@dmitrii.zyrianov7 жыл бұрын
Oh, I hoped that it would be the method with some sort of using residuals and integral over closed curve
@lionelinx77 жыл бұрын
Damn bprp back at it with more supreme swag👌🔥🔥 and some fire integration techniques too
@holyshit9227 жыл бұрын
People which like partial fraction and undetermined coefficients will like this method I know another way calculating this by using reduction formula Int(dx/(1+x^2)^n)=Int(((1+x^2)-x^2)/(1+x^2)^n dx)=Int((1+x^2)/(1+x^2)^ndx)-Int(x^2/(1+x^2)^ndx) Int(dx/(1+x^2)^n)=Int(1/(1+x^2)^(n-1)dx)-Int(x*x/(1+x^2)^{n}dx) First integral is reduced by canceling common factor , second integral can be reduced by calculating by parts u=x , dv=x/(1+x^2)^ndx du=dx, v=-1/(2(n-1))*1/(1+x^2)^(n-1) 1 can be replaced with a^2
@divyanshukumar68073 жыл бұрын
0:19 😂😂😂😂 it made me laugh so hard 😂😂😂😂 _😂_ _😂_ _😂_
@dev02ify7 жыл бұрын
I did it with partial fractions. first do 1/(1-x^2)^2 (substitute ix later). since (naive partial fraction) 1/(1-x)^2 + 1/(1+x)^2 gives (2x^2 + 2) / (1-x^2)^2 the integral can be written integral[ 0.5/(1-x)^2 + 0.5/(1+x)^2 - (x^2)/(1-x^2)^2 ] First two terms are trivial to integrate. For the last term, we can integrate by parts: 0.5*integral[ x*(2x)/(1-x^2)^2 ] 0.5*( x * integral[ (2x)/(1-x^2)^2 ] - integral[ integral[ (2x)/(1-x^2)^2 ] ] ) For the integral[ (2x)/(1-x^2)^2 ] It's a chain rule, and gives 1/(1-x^2) So now, the integral of that last term is finally 0.5*( x/(1-x^2) - integral[ 1/(1-x^2) ] ) 0.5*( x/(1-x^2) - integral[ 0.5/(1-x) + 0.5/(1+x) ] ) 0.5*( x/(1-x^2) + 0.5*ln - 0.5*ln ) 0.5*x/(1-x^2) + 0.25*ln(1-x> - 0.25*ln Subtracting it from the integrals of the first two terms yields 0.5/(1-x) - 0.5/(1+x) - 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln x/(1-x^2) - 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln 1/2*x/(1-x^2) - 1/4*ln + 1/4*ln Now you substitute ix and divide the expression by i, and convert the complex logarithms to trig functions
@holyshit9227 жыл бұрын
Yes but you used complex numbers
@AndDiracisHisProphet7 жыл бұрын
That was almost not super much harder than trig sub^^ But nice, never heard of it. Also, cats>bunnies
@blackpenredpen7 жыл бұрын
AndDiracisHisProphet how about cookies?
@AndDiracisHisProphet7 жыл бұрын
It's an ordered set. cats>cookies>bunnies
@blackpenredpen7 жыл бұрын
i must disagree.... cookies > anything
@AndDiracisHisProphet7 жыл бұрын
well even you are allowed to be wrong, sometimes.
@BulaienHate6 жыл бұрын
But I don't remember things, so every time I do trig sub I have to derive all of the trig Identities
@holyshit9227 жыл бұрын
I have an example for next integral battle Int{\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}} but with two different subsitiutions (fe inverse trig substitution and Euler substitution) I had got this integral from differential equation and this integral shows that inverse trig substitution is not always the fastest one
@matthewzuelke67217 жыл бұрын
Love the music!!!
@MathIguess5 жыл бұрын
You assigned the value 0 to the variable C, then added C to the integral as the integration constant... :O
@ms975 жыл бұрын
Wow, amazing explanation. Thank you so much :D
@jivjotsingh75797 жыл бұрын
i wanted u to pronounce...!!anyways gr8 job my friend......Don t forget me...... this is harsimran singh here
@jivjotsingh75797 жыл бұрын
and i like the oreo with green halloweenyy eyes......oooooooooo!!
@shakesmctremens1787 жыл бұрын
Sorry, dunce here.. don't recognize 8:32 - 8:52. What is the name of that method?
@dlevi677 жыл бұрын
It's just algebra. If you have 1 = Cx^3 + (D-A)x^2 + (C-2B)x + (A+D) for every value of x, then: C = 0 since there are no x^3 terms on the other side D-A = 0 since there are no x^2 terms on the other side => D = A C-2B = 0 since there are no x terms on the other side, and since C = 0 then B = 0 too this leaves us with A+D = 1, and since D=A from the x^2 term, both are equal to 1/2
@shakesmctremens1787 жыл бұрын
So in other words, (?) because the x^3 coeff on the left is 0, then the x^3 coeff on the right, C, must also be 0?
@dlevi677 жыл бұрын
There is an equal sign between the two parts, so unless you can think of another, easier way of making them the same... };-) Sorry for being snarky; it really is simple, sometimes. Other times you need to solve a system of equations in the coefficients in a more formal way.
@shakesmctremens1787 жыл бұрын
So is that a yes or a no? ..did I interpret you correctly or not?
@dlevi677 жыл бұрын
It's a yes. The two sides have to be made equal, and the only way to do so for all values of x is to set some coefficients to zero.
@giampiproietti7 жыл бұрын
He uses the Hermite decomposistion for rational functions
@holyshit9227 жыл бұрын
Russian textbooks claim that this method comes from Михаил Васильевич Остроградский but Hermite was only one generation younger and its possible that they found it independently
@holyshit9225 жыл бұрын
There were many accidents like this for example in chemistry conservation of mass was first discovered by Михаил Васильевич Ломоносов and then rediscovered by Antoine de Lavoisier Sources claim that they discover it independently
@emilioreyes7369 Жыл бұрын
@@holyshit922 Brother, I don't know if you will reply to this, but I am very interested in this Russian methods like Euler's sustitution, Weirstrass, Ostrogradski, do you know any book that has these methods detailed? Until now I've only found Piskunov's but it doesn't go into it very deeply
@holyshit922 Жыл бұрын
@@emilioreyes7369 I have only Г.М. Фихтенгольц Курс дифференциального и интегрального исчисления because it is translated to Polish You can find other books if you abe able to speak Russian I was born too late to be able to speak this language
@hoangdungvu310323 күн бұрын
thank you so much!
@mohd.riyazkhan45154 жыл бұрын
Can we take x=tan t and then proceed .We will get our final integral as integral of (cos t)^2 and then we can apply double angle formula (1+cos2t)/2 and solve the integral
@Dhukino7 жыл бұрын
2:53 for epic peyam cameo appearence :D
@nyehard37705 жыл бұрын
Does anyone know the song that starts playing when he's is finding a common denominator around 8ish minutes?
@johnhwhittaker60055 жыл бұрын
2:53 literally shocked me to death
@jamieee4727 жыл бұрын
Nice method!!
@nathanaelmoses79774 жыл бұрын
When partial fraction and integration by parts have a kid
@arda34207 жыл бұрын
As a high school student cant get anything stay strong trig sub!
@tarat.techhh7 жыл бұрын
well i like these animal oreo more than the real one except when i am hungry ...
@tarat.techhh7 жыл бұрын
ostrogradsky????? i don't even know what it means and ???? but still blackpenredpen is the best ...... thanks for uploading everyday
@jozef_kascak7 жыл бұрын
Cheesysins It is a name of man who came with this method.
@holyshit9227 жыл бұрын
if we solve this system of equation using matrix inversion we can change numerator and then calculate new integral easily
@MrJasiekGuitar7 жыл бұрын
Do you know this integral: ∫√(a^2-x^2) dx from 0 to a? It's kind of tricky.
@holyshit9224 жыл бұрын
Jasiek gdy chodziłem do szkoły to taką całkę liczyło się przez części (metoda całek stowarzyszonych) albo po prostu korzystając z interpretacji geometrycznej
@lukandrate98662 жыл бұрын
πa²/4?
@animationtv19086 жыл бұрын
Nvr heard of this method bt th moment i saw t,t automatically bcm my fav👍
@MurakDurak7 жыл бұрын
only the real oreo man...
@CornishMiner7 жыл бұрын
Great video. However, I do prefer it when you don't speed up the video. You've recorded it anyway, just play it normal speed please. Thanks :)
@blackpenredpen7 жыл бұрын
Ok. I will keep that in mind.
@TheGeneralThings7 жыл бұрын
I disagree. It made it sooooo much more entertaining (literally laughed out loud when the music started playing). Plus, as someone who already knows how to do partial fractions, it felt nice not having to go through all those steps when there are other videos for exactly that, but not many showcasing the (lets Google Translate say it) method.
@budtastic12247 жыл бұрын
0.5x speed should help
@jameswilson82707 жыл бұрын
0.05x times speed
@jameswilson82707 жыл бұрын
No but really, the speedups are good for me
@cedricp.49417 жыл бұрын
AMAZING 😃
@AbhaySingh-wy6sj2 жыл бұрын
Hi From India
@raulmendozagomez6964 жыл бұрын
Thanks!! saludos :)
@shubhamgupta96013 жыл бұрын
Honestly this method is so great, Really hope they teach this during JEE prep
@flincocowalski1497 жыл бұрын
hello.good video. Could someone help me whit this ecuation? "x=sin(y)-y". i had pass almost 2 weeks trying to clear the "y" whit no succes. this ecuation come from a problem of electronic power circuit ,and, I have to calculate the Vrms for an arbitrary angle. but thas no much of a plroblem. later in the exercise they asking me to solve the equation for the oposit calculatrion which is find the" firing angle" for a given Vrms(root middle square Voltage).no load
@pfeffer17297 жыл бұрын
flinco cowalski I don't think that has an answer in terms of elementary functions.
@flincocowalski1497 жыл бұрын
Ian .thanx for answer. But what it means? ,It can be solved in any way?
@pfeffer17297 жыл бұрын
It means I don't think the function y = f(x) can be written by adding, multiplying and composing sine, cosine, exponential, log, and rational functions.
@flincocowalski1497 жыл бұрын
Oh.. so has no solution by conventional algebra. How about phasors or complex numbers?
@pfeffer17297 жыл бұрын
You might be able to write it in terms of the lambert W function... I suggest you just expand the Taylor series for sin x, subtract x and invert that.
@lostwizard7 жыл бұрын
Obviously, Oreo is way better than Oreo, or even Oreo for that matter. Or maybe that was Zathras.
@kingbeauregard4 жыл бұрын
I believe it's pronounced "Oscar Mayer".
@kutuboxbayzan59675 жыл бұрын
Well if x= tant makes very eaay
@holyshit9225 жыл бұрын
He used substitution you mentioned in another video
@liz_cherrele43024 жыл бұрын
Hi pls help me solve this its urgent.. Indefinite intergral using ostrigradyski method (2+x) /(1+x²) ²
@aryanks21674 жыл бұрын
Damn I was learning this only recently and it's hard to find any integration technique you haven't done!
@abd-elrahmanmohamed98396 жыл бұрын
Nice 2:53 :D
@blackpenredpen6 жыл бұрын
LOLL
@abd-elrahmanmohamed98396 жыл бұрын
can you explain this method , please www.nabla.hr/CL-IndefIntegralB4.htm#top
@holyshit9225 жыл бұрын
@@abd-elrahmanmohamed9839 You cut the curve y^2=ax^2+bx+c with secant line Few sentences about derivation are in Fichtenholz book I created exercise to find suitable substitution using right triangles and angle bisector Lets draw right triangle and label its sides and angle as in inverse trig subs Draw bisector of angle complementary to theta - other acute angle Bisector will create another right triangle In this new triangle choose angle Pi/4+theta/2 and calculate its tangent
@darcash173810 ай бұрын
Hmm. It seems like it will always be the power - 1, and then will put the integral portions with the remaining 1 power. [(a+bx^m)^n]’ = [n*(a+bx^m)^(n-1)]*mbx^(m-1) So the greatest common factor is simply the thing itself minus one power. Therefore, when dividing it, you will be left with 1 power in the denom, since its n - (n-1). Ultimately, whatever the factors are it will work like that where it is just the power - 1 on the outside, and then only a power of 1 inside the integral. If there are more things in the denom to begin with, eg x^5*(x^3+5)^6 it’s still P1/(x^4) + P2/(x^3+5)^5 + Integrals of (P3/x + P4/(x^3+5))
@pengshi71837 жыл бұрын
听到了背景音乐里的周杰伦和王力宏!
@blackpenredpen7 жыл бұрын
Peng Shi 哈哈哈哈 是的!
@pengshi71837 жыл бұрын
blackpenredpen 臭味相投!
@martinzone81537 жыл бұрын
"Translate to english" does not help at all..LOL
@pengshi71837 жыл бұрын
Martin Zone lol we were talking about the bgm of the video, apparently we have the same taste in music 😂😂
@kevinnncraftXD6 жыл бұрын
I did it integral by trigonometric substitution and i have other answer :c