Ostrogradsky method, integral of 1/(1+x^2)^2

  Рет қаралды 45,112

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер
@renegado2630
@renegado2630 7 жыл бұрын
Omg when u made your cellphone say ostrogradski and then you said method i laughed so hard! Never heard of that method, mind blowing!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
santiago parra naranjo Hahahhahahahha. I like your comment!! Finally someone mentions about the iPhone. Hahahaha
@TheGeneralThings
@TheGeneralThings 7 жыл бұрын
Definitely my favourite method! Not as easy as trig sub, but wayyyy more mind-blowing.
@mmunier947
@mmunier947 7 жыл бұрын
I just needed that for a Fourier transform proof and couldn't wrap my head around it Nice timing thanks!
@neelu_16
@neelu_16 6 жыл бұрын
MMunier watch 3b1b for fourier intuition
@mikenw255
@mikenw255 7 жыл бұрын
I just found this channel recently. You are very excellent and also entertaining. I wish I had you for a teacher when I was in college, I might have learned more. Thank you for your effort! Also ignore the detractors!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Mike W I am really happy to receive your nice comment. Thank you, Mike!
@holyshit922
@holyshit922 7 жыл бұрын
This method can be useful if 1) we dont have factorization of denominator (to find gcf we use successive divisions) 2) we dont know how to calculate trig integrals or forget some trig identities 3) we like partial fraction decomposition and we want to simplify integral before use this decomposition 4) we get integral from Euler or Weierstrass substitution
@NoNameAtAll2
@NoNameAtAll2 7 жыл бұрын
can you tell more about successive devisions?
@holyshit922
@holyshit922 7 жыл бұрын
In this example you have Q(x)and Q'(x) do the long division and remember the remainder R_{1}(x) and then take Q'(x) and R_{1}(x) to the next step (deg Q'(x)< deg Q(x) and that is why you choose Q'(x) to the next step) repeat this steps until remainder is some constant if it is zero last divisor is your gcf Maybe blackpenredpen will give you better explanation Do you know Euclid's algorithm with division for numbers ? This is similar
@MujiburRahman-xk6vv
@MujiburRahman-xk6vv 4 жыл бұрын
The instructor is awesome. He should be commended for his excellent explanation of this beautiful method.
@tarat.techhh
@tarat.techhh 7 жыл бұрын
it was actually cool the way you fast forwarded the video
@martinzone8153
@martinzone8153 7 жыл бұрын
Excellent. Just how the heck Ostrogradsky did come to that method?
@peppybocan
@peppybocan 7 жыл бұрын
That's some Russian math school :D
@holyshit922
@holyshit922 7 жыл бұрын
Key observation which allows you to derive this method is that rational part of integral appears if denominator has repeated roots (real or complex)
@vyz333
@vyz333 7 жыл бұрын
Amazing video! . Peyam's cameo at 2:53 made my day.
@anatomania1126
@anatomania1126 7 жыл бұрын
use the Chen Lu
@shivanshnigam4015
@shivanshnigam4015 10 ай бұрын
Nah, we gotta use lu Chen here
@mohan153doshi
@mohan153doshi 7 жыл бұрын
Great way of doing this integral - and your teaching was uber cool - :)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
mohan153doshi thank you!!!!!!
@adetokunboarogbonlo2491
@adetokunboarogbonlo2491 7 жыл бұрын
Great video blackpenredpenbluepen. Pls add the link to ``use the Chen Lu!``
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Adetokunbo Arogbonlo It's here on Dr. Peyam's channel! kzbin.info/www/bejne/b6PCZ52Cod2mmsU
@holyshit922
@holyshit922 7 жыл бұрын
I think that another one example for this method will be useful , an example which shows advantages of this method when we have not given factorization of denominator explicitly
@asifalamjoy9530
@asifalamjoy9530 6 жыл бұрын
You are a wizard . Thank a lot man
@jameswilson8270
@jameswilson8270 7 жыл бұрын
I've never seen this. Awesome video.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
James Wilson thanks!!!
@thephysicistcuber175
@thephysicistcuber175 7 жыл бұрын
Finally a method that I legit didn't know :)
@holyshit922
@holyshit922 2 жыл бұрын
In my opinion this method can be simplified First calculate Q_{1}(x) = GCD(Q(x),Q'(x)) It can be done two ways 1) using factorization of Q(x) 2) using Euclidean algorithm for polynomials Then calculate Q_{2}(x) = Q(x)/Q_{1}(x) Calculate auxiliary polynomial H(x) = Q_{2}(x)Q_{1}'(x)/Q_{1}(x) Assume that degree of each numerator are strictly less than degree of corresponding denominator Solve system of linear equations written from equation below P(x) = P_{1}'(x)Q_{2}(x) - P_{1}(x)H(x) + P_{2}(x)Q_{1}(x) For an exercise prove that H(x) always be a polynomial
@KeyMan137
@KeyMan137 7 жыл бұрын
7:52 - 9:05 was my favorite part. Cat > Bunny > Oreo
@ogusqiu6926
@ogusqiu6926 3 жыл бұрын
so when do we use ostrogradski's method over trig sub and partial fractions?
@thecorpooration
@thecorpooration 3 жыл бұрын
This video is amazing! Thank you!
@lkxemmeji7588
@lkxemmeji7588 7 жыл бұрын
Привет красный фломастер чёрный фломастер ! Классное видео с музыкальной паузой :)
@dmitrii.zyrianov
@dmitrii.zyrianov 7 жыл бұрын
Oh, I hoped that it would be the method with some sort of using residuals and integral over closed curve
@lionelinx7
@lionelinx7 7 жыл бұрын
Damn bprp back at it with more supreme swag👌🔥🔥 and some fire integration techniques too
@holyshit922
@holyshit922 7 жыл бұрын
People which like partial fraction and undetermined coefficients will like this method I know another way calculating this by using reduction formula Int(dx/(1+x^2)^n)=Int(((1+x^2)-x^2)/(1+x^2)^n dx)=Int((1+x^2)/(1+x^2)^ndx)-Int(x^2/(1+x^2)^ndx) Int(dx/(1+x^2)^n)=Int(1/(1+x^2)^(n-1)dx)-Int(x*x/(1+x^2)^{n}dx) First integral is reduced by canceling common factor , second integral can be reduced by calculating by parts u=x , dv=x/(1+x^2)^ndx du=dx, v=-1/(2(n-1))*1/(1+x^2)^(n-1) 1 can be replaced with a^2
@divyanshukumar6807
@divyanshukumar6807 3 жыл бұрын
0:19 😂😂😂😂 it made me laugh so hard 😂😂😂😂 _😂_ _😂_ _😂_
@dev02ify
@dev02ify 7 жыл бұрын
I did it with partial fractions. first do 1/(1-x^2)^2 (substitute ix later). since (naive partial fraction) 1/(1-x)^2 + 1/(1+x)^2 gives (2x^2 + 2) / (1-x^2)^2 the integral can be written integral[ 0.5/(1-x)^2 + 0.5/(1+x)^2 - (x^2)/(1-x^2)^2 ] First two terms are trivial to integrate. For the last term, we can integrate by parts: 0.5*integral[ x*(2x)/(1-x^2)^2 ] 0.5*( x * integral[ (2x)/(1-x^2)^2 ] - integral[ integral[ (2x)/(1-x^2)^2 ] ] ) For the integral[ (2x)/(1-x^2)^2 ] It's a chain rule, and gives 1/(1-x^2) So now, the integral of that last term is finally 0.5*( x/(1-x^2) - integral[ 1/(1-x^2) ] ) 0.5*( x/(1-x^2) - integral[ 0.5/(1-x) + 0.5/(1+x) ] ) 0.5*( x/(1-x^2) + 0.5*ln - 0.5*ln ) 0.5*x/(1-x^2) + 0.25*ln(1-x> - 0.25*ln Subtracting it from the integrals of the first two terms yields 0.5/(1-x) - 0.5/(1+x) - 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln x/(1-x^2) - 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln 0.5*x/(1-x^2) - 0.25*ln + 0.25*ln 1/2*x/(1-x^2) - 1/4*ln + 1/4*ln Now you substitute ix and divide the expression by i, and convert the complex logarithms to trig functions
@holyshit922
@holyshit922 7 жыл бұрын
Yes but you used complex numbers
@AndDiracisHisProphet
@AndDiracisHisProphet 7 жыл бұрын
That was almost not super much harder than trig sub^^ But nice, never heard of it. Also, cats>bunnies
@blackpenredpen
@blackpenredpen 7 жыл бұрын
AndDiracisHisProphet how about cookies?
@AndDiracisHisProphet
@AndDiracisHisProphet 7 жыл бұрын
It's an ordered set. cats>cookies>bunnies
@blackpenredpen
@blackpenredpen 7 жыл бұрын
i must disagree.... cookies > anything
@AndDiracisHisProphet
@AndDiracisHisProphet 7 жыл бұрын
well even you are allowed to be wrong, sometimes.
@BulaienHate
@BulaienHate 6 жыл бұрын
But I don't remember things, so every time I do trig sub I have to derive all of the trig Identities
@holyshit922
@holyshit922 7 жыл бұрын
I have an example for next integral battle Int{\frac{dx}{x^2(4x^2-3)^2\sqrt{x^2-1}}} but with two different subsitiutions (fe inverse trig substitution and Euler substitution) I had got this integral from differential equation and this integral shows that inverse trig substitution is not always the fastest one
@matthewzuelke6721
@matthewzuelke6721 7 жыл бұрын
Love the music!!!
@MathIguess
@MathIguess 5 жыл бұрын
You assigned the value 0 to the variable C, then added C to the integral as the integration constant... :O
@ms97
@ms97 5 жыл бұрын
Wow, amazing explanation. Thank you so much :D
@jivjotsingh7579
@jivjotsingh7579 7 жыл бұрын
i wanted u to pronounce...!!anyways gr8 job my friend......Don t forget me...... this is harsimran singh here
@jivjotsingh7579
@jivjotsingh7579 7 жыл бұрын
and i like the oreo with green halloweenyy eyes......oooooooooo!!
@shakesmctremens178
@shakesmctremens178 7 жыл бұрын
Sorry, dunce here.. don't recognize 8:32 - 8:52. What is the name of that method?
@dlevi67
@dlevi67 7 жыл бұрын
It's just algebra. If you have 1 = Cx^3 + (D-A)x^2 + (C-2B)x + (A+D) for every value of x, then: C = 0 since there are no x^3 terms on the other side D-A = 0 since there are no x^2 terms on the other side => D = A C-2B = 0 since there are no x terms on the other side, and since C = 0 then B = 0 too this leaves us with A+D = 1, and since D=A from the x^2 term, both are equal to 1/2
@shakesmctremens178
@shakesmctremens178 7 жыл бұрын
So in other words, (?) because the x^3 coeff on the left is 0, then the x^3 coeff on the right, C, must also be 0?
@dlevi67
@dlevi67 7 жыл бұрын
There is an equal sign between the two parts, so unless you can think of another, easier way of making them the same... };-) Sorry for being snarky; it really is simple, sometimes. Other times you need to solve a system of equations in the coefficients in a more formal way.
@shakesmctremens178
@shakesmctremens178 7 жыл бұрын
So is that a yes or a no? ..did I interpret you correctly or not?
@dlevi67
@dlevi67 7 жыл бұрын
It's a yes. The two sides have to be made equal, and the only way to do so for all values of x is to set some coefficients to zero.
@giampiproietti
@giampiproietti 7 жыл бұрын
He uses the Hermite decomposistion for rational functions
@holyshit922
@holyshit922 7 жыл бұрын
Russian textbooks claim that this method comes from Михаил Васильевич Остроградский but Hermite was only one generation younger and its possible that they found it independently
@holyshit922
@holyshit922 5 жыл бұрын
There were many accidents like this for example in chemistry conservation of mass was first discovered by Михаил Васильевич Ломоносов and then rediscovered by Antoine de Lavoisier Sources claim that they discover it independently
@emilioreyes7369
@emilioreyes7369 Жыл бұрын
@@holyshit922 Brother, I don't know if you will reply to this, but I am very interested in this Russian methods like Euler's sustitution, Weirstrass, Ostrogradski, do you know any book that has these methods detailed? Until now I've only found Piskunov's but it doesn't go into it very deeply
@holyshit922
@holyshit922 Жыл бұрын
@@emilioreyes7369 I have only Г.М. Фихтенгольц Курс дифференциального и интегрального исчисления because it is translated to Polish You can find other books if you abe able to speak Russian I was born too late to be able to speak this language
@hoangdungvu3103
@hoangdungvu3103 23 күн бұрын
thank you so much!
@mohd.riyazkhan4515
@mohd.riyazkhan4515 4 жыл бұрын
Can we take x=tan t and then proceed .We will get our final integral as integral of (cos t)^2 and then we can apply double angle formula (1+cos2t)/2 and solve the integral
@Dhukino
@Dhukino 7 жыл бұрын
2:53 for epic peyam cameo appearence :D
@nyehard3770
@nyehard3770 5 жыл бұрын
Does anyone know the song that starts playing when he's is finding a common denominator around 8ish minutes?
@johnhwhittaker6005
@johnhwhittaker6005 5 жыл бұрын
2:53 literally shocked me to death
@jamieee472
@jamieee472 7 жыл бұрын
Nice method!!
@nathanaelmoses7977
@nathanaelmoses7977 4 жыл бұрын
When partial fraction and integration by parts have a kid
@arda3420
@arda3420 7 жыл бұрын
As a high school student cant get anything stay strong trig sub!
@tarat.techhh
@tarat.techhh 7 жыл бұрын
well i like these animal oreo more than the real one except when i am hungry ...
@tarat.techhh
@tarat.techhh 7 жыл бұрын
ostrogradsky????? i don't even know what it means and ???? but still blackpenredpen is the best ...... thanks for uploading everyday
@jozef_kascak
@jozef_kascak 7 жыл бұрын
Cheesysins It is a name of man who came with this method.
@holyshit922
@holyshit922 7 жыл бұрын
if we solve this system of equation using matrix inversion we can change numerator and then calculate new integral easily
@MrJasiekGuitar
@MrJasiekGuitar 7 жыл бұрын
Do you know this integral: ∫√(a^2-x^2) dx from 0 to a? It's kind of tricky.
@holyshit922
@holyshit922 4 жыл бұрын
Jasiek gdy chodziłem do szkoły to taką całkę liczyło się przez części (metoda całek stowarzyszonych) albo po prostu korzystając z interpretacji geometrycznej
@lukandrate9866
@lukandrate9866 2 жыл бұрын
πa²/4?
@animationtv1908
@animationtv1908 6 жыл бұрын
Nvr heard of this method bt th moment i saw t,t automatically bcm my fav👍
@MurakDurak
@MurakDurak 7 жыл бұрын
only the real oreo man...
@CornishMiner
@CornishMiner 7 жыл бұрын
Great video. However, I do prefer it when you don't speed up the video. You've recorded it anyway, just play it normal speed please. Thanks :)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Ok. I will keep that in mind.
@TheGeneralThings
@TheGeneralThings 7 жыл бұрын
I disagree. It made it sooooo much more entertaining (literally laughed out loud when the music started playing). Plus, as someone who already knows how to do partial fractions, it felt nice not having to go through all those steps when there are other videos for exactly that, but not many showcasing the (lets Google Translate say it) method.
@budtastic1224
@budtastic1224 7 жыл бұрын
0.5x speed should help
@jameswilson8270
@jameswilson8270 7 жыл бұрын
0.05x times speed
@jameswilson8270
@jameswilson8270 7 жыл бұрын
No but really, the speedups are good for me
@cedricp.4941
@cedricp.4941 7 жыл бұрын
AMAZING 😃
@AbhaySingh-wy6sj
@AbhaySingh-wy6sj 2 жыл бұрын
Hi From India
@raulmendozagomez696
@raulmendozagomez696 4 жыл бұрын
Thanks!! saludos :)
@shubhamgupta9601
@shubhamgupta9601 3 жыл бұрын
Honestly this method is so great, Really hope they teach this during JEE prep
@flincocowalski149
@flincocowalski149 7 жыл бұрын
hello.good video. Could someone help me whit this ecuation? "x=sin(y)-y". i had pass almost 2 weeks trying to clear the "y" whit no succes. this ecuation come from a problem of electronic power circuit ,and, I have to calculate the Vrms for an arbitrary angle. but thas no much of a plroblem. later in the exercise they asking me to solve the equation for the oposit calculatrion which is find the" firing angle" for a given Vrms(root middle square Voltage).no load
@pfeffer1729
@pfeffer1729 7 жыл бұрын
flinco cowalski I don't think that has an answer in terms of elementary functions.
@flincocowalski149
@flincocowalski149 7 жыл бұрын
Ian .thanx for answer. But what it means? ,It can be solved in any way?
@pfeffer1729
@pfeffer1729 7 жыл бұрын
It means I don't think the function y = f(x) can be written by adding, multiplying and composing sine, cosine, exponential, log, and rational functions.
@flincocowalski149
@flincocowalski149 7 жыл бұрын
Oh.. so has no solution by conventional algebra. How about phasors or complex numbers?
@pfeffer1729
@pfeffer1729 7 жыл бұрын
You might be able to write it in terms of the lambert W function... I suggest you just expand the Taylor series for sin x, subtract x and invert that.
@lostwizard
@lostwizard 7 жыл бұрын
Obviously, Oreo is way better than Oreo, or even Oreo for that matter. Or maybe that was Zathras.
@kingbeauregard
@kingbeauregard 4 жыл бұрын
I believe it's pronounced "Oscar Mayer".
@kutuboxbayzan5967
@kutuboxbayzan5967 5 жыл бұрын
Well if x= tant makes very eaay
@holyshit922
@holyshit922 5 жыл бұрын
He used substitution you mentioned in another video
@liz_cherrele4302
@liz_cherrele4302 4 жыл бұрын
Hi pls help me solve this its urgent.. Indefinite intergral using ostrigradyski method (2+x) /(1+x²) ²
@aryanks2167
@aryanks2167 4 жыл бұрын
Damn I was learning this only recently and it's hard to find any integration technique you haven't done!
@abd-elrahmanmohamed9839
@abd-elrahmanmohamed9839 6 жыл бұрын
Nice 2:53 :D
@blackpenredpen
@blackpenredpen 6 жыл бұрын
LOLL
@abd-elrahmanmohamed9839
@abd-elrahmanmohamed9839 6 жыл бұрын
can you explain this method , please www.nabla.hr/CL-IndefIntegralB4.htm#top
@holyshit922
@holyshit922 5 жыл бұрын
@@abd-elrahmanmohamed9839 You cut the curve y^2=ax^2+bx+c with secant line Few sentences about derivation are in Fichtenholz book I created exercise to find suitable substitution using right triangles and angle bisector Lets draw right triangle and label its sides and angle as in inverse trig subs Draw bisector of angle complementary to theta - other acute angle Bisector will create another right triangle In this new triangle choose angle Pi/4+theta/2 and calculate its tangent
@darcash1738
@darcash1738 10 ай бұрын
Hmm. It seems like it will always be the power - 1, and then will put the integral portions with the remaining 1 power. [(a+bx^m)^n]’ = [n*(a+bx^m)^(n-1)]*mbx^(m-1) So the greatest common factor is simply the thing itself minus one power. Therefore, when dividing it, you will be left with 1 power in the denom, since its n - (n-1). Ultimately, whatever the factors are it will work like that where it is just the power - 1 on the outside, and then only a power of 1 inside the integral. If there are more things in the denom to begin with, eg x^5*(x^3+5)^6 it’s still P1/(x^4) + P2/(x^3+5)^5 + Integrals of (P3/x + P4/(x^3+5))
@pengshi7183
@pengshi7183 7 жыл бұрын
听到了背景音乐里的周杰伦和王力宏!
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Peng Shi 哈哈哈哈 是的!
@pengshi7183
@pengshi7183 7 жыл бұрын
blackpenredpen 臭味相投!
@martinzone8153
@martinzone8153 7 жыл бұрын
"Translate to english" does not help at all..LOL
@pengshi7183
@pengshi7183 7 жыл бұрын
Martin Zone lol we were talking about the bgm of the video, apparently we have the same taste in music 😂😂
@kevinnncraftXD
@kevinnncraftXD 6 жыл бұрын
I did it integral by trigonometric substitution and i have other answer :c
@fountainovaphilosopher8112
@fountainovaphilosopher8112 7 жыл бұрын
Coooool
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Cooooool
@darkahmedp
@darkahmedp 2 жыл бұрын
yes
@ApplepieFTW
@ApplepieFTW 7 жыл бұрын
Pretty epic
@aashsyed1277
@aashsyed1277 3 жыл бұрын
9:51 i was laughing
@XDjUanZInHO
@XDjUanZInHO 5 жыл бұрын
Piskunov ;)
@maurocruz1824
@maurocruz1824 6 жыл бұрын
Demidovich.
@ishaanthakur7382
@ishaanthakur7382 4 жыл бұрын
i can pronounce ostrogradski!!!!!!!!!
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
integral of sqrt of tanx
25:46
Prime Newtons
Рет қаралды 39 М.
Why I don't teach LIATE (integration by parts trick)
14:54
blackpenredpen
Рет қаралды 355 М.
The Limit (do not use L'Hospital rule)
12:08
blackpenredpen
Рет қаралды 696 М.
The Easiest Integral on YouTube
31:09
blackpenredpen
Рет қаралды 628 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 714 М.
1995 British Mathematics Olympiad problem
20:59
Prime Newtons
Рет қаралды 215 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 762 М.
finally 0^0 approaches 0 (after 6 years!)
14:50
blackpenredpen
Рет қаралды 494 М.