Pure math student here. We're allowed to do this by what's known as the dominated convergence theorem. This theorem is equivalent to saying that you're allowed to bring a limit from the inside to the outside the intrgral provided that the integrand converges uniformly to some continuous function and the outside limit exists. In our case, the convergence is uniform as the integrand viewed as a function of n is a continuous function on a compact interval [epsilon,n] for all epsilon > 0. The integral is known to exist and so, limiting epsilon to zero gives the correct result in this case. Also, letting n be the upper bound is also totally fine if you know that the limits exist independently, which in this case, they do. I've skipped a few details but the central idea is the dominated convergence theorem, double limits existing implies you can calulate them using convenient 1 dimensional paths, and integrals existing implies that integration over a limiting boundary will yield the same result.
@davidalexander45055 жыл бұрын
@@PapaFlammy69 that's all good, I love your videos man!
@akeelhowell89445 жыл бұрын
David Alexander was basically going to say this, but decided to see if anyone else did first
@alicewyan5 жыл бұрын
Gosh, thank you, the upper bound substitution was puzzling me!
@kummer452 жыл бұрын
These are the details that needs to be said for those who wants more rigor on the derivation. His approach is acceptable giving an heuristic introduction. However a written comment on certain items presented on the video may furnish a solid base on these matters. Excellent observation Alexander.
@AndrewDotsonvideos5 жыл бұрын
This.Is.So.Oily leave an Euler if you macoroni’d😫😫🤷🏿♀️
@austinmitchell26525 жыл бұрын
e
@alse725 жыл бұрын
Mas"k"eroni please, not ma"sh"eroni. Also the limit notation as "سا" should be taught in schools
@neilgerace3555 жыл бұрын
What does the Arabic you have written really mean, please?
@alse725 жыл бұрын
Sorry for spoiling it but it's just the letter s followed by an a, so it's just "sa" which doesn't really mean anything as far as I know
@rot60155 жыл бұрын
mans fun at parties
@alse725 жыл бұрын
@@rot6015 you can't even imagine ;)
@susiehue94655 жыл бұрын
I disagree. Arabic letters and numbers should not be taught in school. We should teach our children good o'l Christian numbers
@MrLikon75 жыл бұрын
wikipedia: The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational.
@zoltankurti4 жыл бұрын
That's what you get if you come up with weired numbers!
@createyourownfuture54102 жыл бұрын
It has to be irrational... By intuition If you define numbers by weird functions must likely it is irrational.
@DendrocnideMoroides2 жыл бұрын
@@createyourownfuture5410 it is almost certainly irrational but there is no proof of it
@sudhanshumishra64824 жыл бұрын
Really love watching you solve integrals.
@PapaFlammy694 жыл бұрын
:))
@rezomegrelidze77485 жыл бұрын
Didn't know Marco Reus was a mathematician.
@Mindcrackings5 жыл бұрын
Can't unsee lmao
@hal6yon5 жыл бұрын
So that's what he was doing while bayern ripped his team a new one
@peppybocan5 жыл бұрын
Oily-Macaroni!
@neilgerace3555 жыл бұрын
But ketchup and mayo? Who does that??
@peppybocan5 жыл бұрын
@@neilgerace355 you do that for burgers. You mix up mayo with a little bit of ketchup (and even mustard, if needed!)
@neilgerace3555 жыл бұрын
@@peppybocan but macaroni! As an Italian, I'm pretending to be offended :)
@neilgerace3555 жыл бұрын
Oily macaroni is what you get if you use the wrong cheese
@peppybocan5 жыл бұрын
@@neilgerace355 yes. Very fat cheese.
@Gustavo_01075 жыл бұрын
Make a video solving that monster from april fools day!!!!🌋🗺🧭⛰⛰🌍🦓🐈🐎
@okoyoso5 жыл бұрын
Apparently, the notation for lim in arabic is نهــــــــــــا so that's not far off lol
@Ricocossa15 жыл бұрын
Yay! The Oily Macaroni constant! By the way, Mascheroni is pronounced "Maskeroni" (Italian 'ch' is 'k')
@tszhanglau57475 жыл бұрын
Oiler-macaroni with ketchup sounds like a good topic for a cooking video...and the manipulation of the bounds is awesome.
@neilgerace3555 жыл бұрын
14:26 White line fever, as we say in Australian football
@theflaggeddragon94725 жыл бұрын
Regarding analytic number theory, would you do a video on the derivation of the functional equation for the Riemann zeta function? I really don't think it's more difficult than some of the crazy stuff you've done, and it's crazy useful in big boi maths
@mihaipuiu6231 Жыл бұрын
I watch you for a few years, because not only that you are a very good mathematician,...but b/c you are a good speaker, with writing very clear, and nice 'n neat. Also, you are very FUNNY, and this is always a plus. Congratulations!
@PapaFlammy69 Жыл бұрын
@TimesOfSilence5 жыл бұрын
I was really verwirrt at the beginning, because there were no Klammern between the Integralzeichen and the dx. So I thought, that would end in really crazy mathematics, as the Integralzeichen only belongs to the first part of the sum, and the dx only to the second o.O
@hal6yon5 жыл бұрын
He is speaking the language of gods
@Ukrainewinnerrrr5 жыл бұрын
Lmfao der hat Recht !
@jkid11342 жыл бұрын
Name a more iconic duo than papa and gamma, I'll wait
@Reliquancy5 жыл бұрын
It seems easier to just expand integral from 0 to 1 of 1/(1-x) as integral from 0 to 1 of sum from 0 to n of x^k. then swap the sum and integral so you have sum from 0 to n of integral from 0 to 1 of x^k. the integral becomes x^(k+1)/(k+1) by power rule evaluated at x=1 minus evaluated at x=0 gives 1/(k+1) which you sum from k= 0 to n.
@looiepoohie73635 жыл бұрын
Papa flammy! You requested my response to "Why does Automatic Differentiation using Dual Numbers 𝑑=𝑎+𝜖𝑏,𝜖^2=0 work so absolutely amazing?" on Quora. 1.) I didn't know you had a Quora! 2.) I have no fucking idea how to answer that. Glad to see you on other intellectual platfroms. :)
@Riiisuu5 жыл бұрын
This better come up on my first year uni maths exam or I am screwed
@jorgemedrano91323 жыл бұрын
"We can do this if this converges, and it does" proof by intuition
@angelogandolfo41743 жыл бұрын
14:30 - “no, it’s because of the chalk dust, I’m terribly sorry....” yeah, yeah, sure it is...... we ALL believe you, honestly...... 😂🤣😂😤🤧
@neilgerace3555 жыл бұрын
7:30 But from left to right, just to be fun 8:07 When in doubt, just Fubini the shit
@emilyscloset26485 жыл бұрын
Now I'm down for some oilly pasta. But in all serious that was fun to watch. Props
@mrandersonpw535 жыл бұрын
About the step in 9:30, (1-t/n)^n / t. can't tell why you can do that. The function is not L1, but (1-t/n)^n / t seems to increase for t>1 fixed. Must be by Fatou's Lemma plus the vertical truncation for N=max{t,n},0=< t=
@Uni-Coder5 жыл бұрын
Will any mathematician blogger ever make a video about probability theory? Then, mathematical statistics, and then, data science and machine learning, and then, artificial intelligence! Very modern topic
@erikdurfey55765 жыл бұрын
That in-te-ge-ral sign at 4:56 tho
@aboutmath29955 жыл бұрын
great video man!
@martinepstein98265 жыл бұрын
Awesome integral but I'm suspicious of the method. Your first step using linearity is illegal since both of those integrals diverge. To split it up you'd first need to take the integral from epsilon to 1 - epsilon and then take the limit as epsilon goes to 0. Then by making different substitutions in the first and second integrals the bounds become different functions of epsilon and you can't use linearity to recombine the integrands.
@cedricp.49415 жыл бұрын
Integral from 0 to 1 of 1/t dt = pi.
@martinepstein98265 жыл бұрын
@@cedricp.4941 Good to know.
@twistedsector5 жыл бұрын
He's a physicist what do you expect
@alicewyan5 жыл бұрын
physicists are allowed to split divergent integrals as long as the divergent parts cancel out in the end ;)
@tshepisomhlanga53894 жыл бұрын
This is one interesting intehgeral
@sansamman46195 жыл бұрын
I'm still watching all your videos but i no longer have the extra time to comment love you papa
@wolframhuttermann75194 жыл бұрын
Man kann sich das leben komplizierter machen, als es ist. in 16:32 kann ich auch für x = 1-(1-x) im Nenner schreiben und dann vermeidet man eine weitere Substitution.
@snfn78475 жыл бұрын
Gucci video papa
@Павел-и5б3ц10 ай бұрын
Классное объяснение. Спасибо.
@gesucristo05 жыл бұрын
how do you show the limit doesn't diverge?
@kummer452 жыл бұрын
I'm not going to be very constructively critical about these series of videos. You are very responsible saying the necessary theorems involved and showing the needed steps to arrive at the solution. I've noticed that you are generous providing the technicalities too. You answered your call and have all the talent needed to become a good teacher and instructor. Math always happens as a problem solving endeavor. My critique or observation in this case is more of a recommendation. Some sources should be quoted so those interested on other details may access the information. For example saying that such topics belongs to "SPECIAL FUNCTIONS" and "Fractional Calculus" would help people where to dive their curiosity. Your approach is interdisciplinary to the point that requires knowledge on few subjects.. When I make proofs I quote the source or the author that I read beforehand so people follow or read more the sources on the subject. Mathematics IS hard but it doesn't mean that mathematics stops being beautiful. People MUST realize that math requires ALWAYS paper, eraser, pencil in hands ALL THE TIME. When I construct the derivations there are few steps that asks for the gymnastics of algebra and the theorems. I know that you intend to do it user friendly under a span of time but when people dives their nose into the details, all of them realize that it's full hard work and LONG hours understanding what is GOING ON when these derivations happens. In general I don't see any other issue with your presentation. They are very good and on point. For further details people should fill in some details if they want more insight of what is going on. :P tyvm for this content.
@pythagorasaurusrex98535 жыл бұрын
Ahhhh! Ich habe es eigenständig bis 6:30 geschafft, habe aber dann versucht mit der Taylerreihe von exp(t)/t weiterzumachen. Bin danach nicht mehr wirklich weiter gekommen. Mir kam zwar dann die entstehende Reihe "irgendwie" bekannt vor und der Taschenrechner hat dann nach ein paar Iterationen 0,577.... ausgespuckt, ich habe die "Macceroni Alio-Olio"-Konstante nicht gesehen. Daher.. Daumen hoch für (1+t/n)^n als Alternative zur Taylerreihe. EDIT: Noch was. Am Anfang des Videos sagst du, dass du nicht weißt, ob Gamma irrational ist oder nicht... Haha... Das weiß zur Zeit niemand!
@user_27935 жыл бұрын
I literally woke up in the middle of the night thinking about this : What is -1 raised to an irrational power?
@angelmendez-rivera3515 жыл бұрын
-1 = e^πi, so (-1)^x = (e^πi)^x = e^(πxi) = cos(πx) + isin(πx). For example, (-1)^π = cos(π^2) + isin(π^2)
@Toxic__rl Жыл бұрын
love your vids, btw, is it okay not to put (...) before d(something)?
@FT0295 жыл бұрын
13:43 I'm not entirely convinced you're allowed to just add infinity (since the integral is ln(n)) and subtract it. Or perhaps I'm missing something simple.
@oni83373 жыл бұрын
he said it does exist
@matheus_rml5 жыл бұрын
This constant is almost sqrt(3)/3
@letolion5 жыл бұрын
8:48_These Sango_Kou Kameh -a_Meha moves lol
@Gustavo_01075 жыл бұрын
Yo is that true? I heard some people saying that germany will change its official language to english
@abdullasulfikkar52825 жыл бұрын
Mascheroni or macaroni????😂😂😂😂
@danibarack5525 жыл бұрын
how can you make k and n look so similar?
@EnginAtik5 жыл бұрын
Integral variable ‘t’ and limit variable ‘n’ are independent of each other. Did we assume a dependence between ‘t’ and ‘n’ while replacing the upper bound of integral over ‘t’ by ‘n’?
@theoleblanc97615 жыл бұрын
Rigor is dead. You can't split a convergent intregral into 2 divergent integrals
@angelmendez-rivera3515 жыл бұрын
You can, because of Cauchy principal values.
@zapuer17084 жыл бұрын
Euler macaron
@sahilbaori90525 жыл бұрын
How can I share problems with you so that it may potentially become a topic of your videos?
@ArthurvanH0udt6 ай бұрын
AT 1m57 you say: "they both diverge so slowly that we get a finite difference"! Isn't that missing a statement like that they also both diverge along a common divergence line (sorry i'm not a pro mathematician but this is how I say it). I mean both could diverge very very very slowly but still both be/live in some different "locality" of infinity en thus the difference would/could also be infitie?
@sanjusanju34545 жыл бұрын
I like ur vedios make more about new topics in mathematics
@goatmatata27985 жыл бұрын
Nice watch =)
@anthonygreven28115 жыл бұрын
at 11:43 he wrote that "(dt-[1-t/n]^n)/t" is equal to "(1-[1-t/n]^n)/t"... how can we demonstrate this?
@louisvan43955 жыл бұрын
brilliant video! I have one slight question though. don't we need to make sure the function 'tau to the k' is uniform convergent before interchanging the integral and summation signs?
@louisvan43955 жыл бұрын
Also I love that you have videos both in English and German. I once visited Germany, and it's hands down one of the best languages I've had the chance to learn. I'm a proud polyglot myself, and I like what you've done with the channel
@scottwhitman98682 жыл бұрын
Its a finite sum
@sounapet7955 жыл бұрын
i have one problem about intergral. intergral of x^8/cuberoot(1+x^4 ) please help me this one
@desertrainfrog16912 жыл бұрын
No elementary antiderivative.
@ketermeissner98985 жыл бұрын
'Maskeroni', not 'Masheroni'
@verainsardana5 жыл бұрын
At 10:19 how can you say that limit infinity of integral is equal to that of definition of e, either infinity can be greater.
@jameswilson82705 жыл бұрын
Love your channel. But the very first step produces the sum of two divergent integrals. The Clay Mathematics Institute would have thrown you off the stage. ;)
@jameswilson82705 жыл бұрын
@@PapaFlammy69 It's all good, my man. Divergent boys are a pain in the neck.
@zoltankurti4 жыл бұрын
How do you do 2:25 rigorously? In the video you got 2 diverging integrals and manipulated them separatly.
@desertrainfrog16912 жыл бұрын
Assume it works and then either be sad or happy depending on what happens.
@zoltankurti2 жыл бұрын
@@desertrainfrog1691 Are you a physicist?
@desertrainfrog16912 жыл бұрын
@@zoltankurti I'm just a guy who's okay with things working out, whether they're justified or not ;D
@zoltankurti2 жыл бұрын
@@desertrainfrog1691 hmm. Now that I think about it you could be an engineer too. Hope that's not insulting to you, I don't mean to.
@sayantanmazumdar93712 жыл бұрын
same question
@non-inertialobserver9465 жыл бұрын
Integaral
@pratik_shrestha5 жыл бұрын
Cicada?
@ice-bug4654 жыл бұрын
What is the music that you use in the intro?
@MuitaMerdaAoVivo5 жыл бұрын
i love how he says "we can just fubini this shit, probably"
@Nick-hc2cs5 жыл бұрын
17:11 lel
@general90645 жыл бұрын
t = 1-x and t = ln(x) then you add them the integrals later. I don't quite get it
@angelmendez-rivera3515 жыл бұрын
jeremy brett The dummy variable is irrelevant
@hafarov82055 жыл бұрын
Papa, I don't understand. First, you broke up the integral, then, you substitute -ln(x) with t, moment later, you substitute (1-x) with t. And, in my humble opinion, these two t are different. And at 11:35 you bring two integrals with two different t together. Isn't it a crime against Math or have I missed out something?
@martinepstein98265 жыл бұрын
The variable name in a definite integral doesn't matter. The definite integral is a property of the function being integrated, not the variable we notate it with. If two definite integrals have the same bounds then we can add them by integrating the sum of the functions in the integrands since the integral is a linear operator. So really it didn't matter that both integrals had the variable "t". That makes the proof easier to follow but it's no more valid than saying int[a,b] f(x) dx + int[a,b] g(y) dy = int[a,b] (f+g)(z) dz
@hafarov82055 жыл бұрын
@@martinepstein9826 oh thank you
@tianyi12403 жыл бұрын
Why didn’t you just write the first integral directly as \int_0^1dx/x? You would have saved one useless change of variables,
@mohkerhakon59414 жыл бұрын
int from 0 to 1 of int from 0 to 1 of (1-x^y)/1-x dydx=0.577215664...
@ErhardNeher5 жыл бұрын
Limiteroid
@shanmugasundaram96885 жыл бұрын
You substitute t=- ln(x) for the first integral and t=1-x for the second integral.The t's in the first and second integral are different.
@DragonKidPlaysMC5 жыл бұрын
Was thinking the same, but why?
@dagkouta9865 жыл бұрын
7:02 did he.. did he just say anal 1 notes instead of analysis 1 notes? wow just realised how dirty math sounds
@Ukrainewinnerrrr5 жыл бұрын
I do this calculus in 3 minutes ! Concerning the constant please say MasKerrrronnniiii per favore ! Merci !
@bernardoxbm5 жыл бұрын
I would like to watch this video in German so I can practice the language.
@bernardoxbm5 жыл бұрын
@@PapaFlammy69 ja danke
@midas-holysmoke76422 жыл бұрын
This video is nothing but...
@muhammedalshaer33334 жыл бұрын
These apples explanations don't make a shit of sense 🤣
@muhammedalshaer33334 жыл бұрын
Oh shit one of my math idols replied to me
@theunfightable45133 жыл бұрын
Viel zu umständlich geht leichter wenn du das e Ding direkt als Summe schreibst.
@BhanuNarra15 жыл бұрын
1000th view lol
@BhanuNarra15 жыл бұрын
Papa, can you do more Quantum Field theory
@nickgibson34512 жыл бұрын
When you had that small schpeil about getting to e^t = 1/x literally so many things made more sense, i dont know it may be bc I am a science undergrad starting an engineering phd, but I never had it explained and jesus christ it was so simple yo boy didnt even write it down🥲