The cheap physicist way of doing it: recognize it as the integral representation of the Bose-Einstein function g_s(z) with s = 2 and z = 1 (times an irrelevant Gamma(2), which is one). As is clear from the series definition of the functions, g_s(1) = Zeta(s). Hence the integral is Zeta(2)!
@iridium85624 жыл бұрын
Hahaha omg i literally recognized it from the thumbnail! Shit’s in my blood! 😂
@oni83373 жыл бұрын
ik this identity from blackpenredpen lol
@pranayvenkatesh88155 жыл бұрын
Exam day after tomorrow. Hm.... nah, 13 minutes of Papa Flammy can't hurt....
@shahinaa74255 жыл бұрын
Same here lol
@pranayvenkatesh88155 жыл бұрын
JEE mains in 2 days, why am i watching putnam exam solns? The result is absolutely beautiful tho, no doubt.
@parthpawar78375 жыл бұрын
@@pranayvenkatesh8815 Same here boi. Which shift?
@ashuthoshbharadwaj67035 жыл бұрын
lolol #flammyflammily
@muneebahmad77295 жыл бұрын
@@pranayvenkatesh8815 me too i have my exams tomorrow 😂
@karolakkolo1235 жыл бұрын
*Papa Flammy:* This integral is breathtaking! *Keanu Reeves:* YOU are breathtaking!!
@tommasobruggi66145 жыл бұрын
This is absolutely wonderful. I can already imagine sort of what is about to come and I can’t wait!!
@pedrolourenco95205 жыл бұрын
I'm guessing the answer is π^2/6 (I haven't watched it yet), blame Dr.Peyam for that :D (he made a video of an integral very similar to this one but the x term is raised to the power of s, where s is a complex number, it's great
@mark_tilltill66644 жыл бұрын
I feel so grateful that as an old man, i get to see this before I die. I can hear the symphony that you conduct. Thank you!
@zaheeruddin3235 жыл бұрын
Gauss or GauB xd
@livedandletdie5 жыл бұрын
Let me help you, Gauss or Gauß
@zaheeruddin3235 жыл бұрын
@@livedandletdie Yeah actually hace a spanish keyboard but i can do this, ñçÜl·l xd
@kirasguardian63285 жыл бұрын
Do we have time for *_BONUS INTEGRAL_*?
@CarlosGomes-yc3nm4 жыл бұрын
Love you papa, love me back
@PapaFlammy694 жыл бұрын
@CarlosGomes-yc3nm4 жыл бұрын
Thanks papa
@user-wu8yq1rb9t2 жыл бұрын
*Papaaaaaa* It was great, I want to watch it again and again! Great Thank you so much *My Dear Papa Flammy Mathy*
@Rich-Richards5 жыл бұрын
I’m quite new to mathematics of this level - this explanation was brilliant. I’m glad you deviate into simpler(ish) problems.
@patricksalhany87875 жыл бұрын
You remind me of our friend who said "...and wheeler!!!".
@thelightningwave5 жыл бұрын
Hey, I saw this same integral on Let's Solve Math problems. It was done almost the same exact way. Papa Flammy is doing so many integral videos I'm starting to see repeats from other integral solving KZbinrs.
@davidsonjoseph89915 жыл бұрын
HMMMMM EXPOSÉ?
@jensbauer11414 жыл бұрын
I love your integeral science!
@PapaFlammy694 жыл бұрын
:D
@505steel4 жыл бұрын
That was beautiful
@shayangfkk79483 жыл бұрын
back in 17s if you where a master of this integarahl you would be an amazing physicist . this thing is everywhere in stat mech .
@The_Professor_S_5 жыл бұрын
Gotta love the merch Papa Flammy is putting out. That’s not a meme, I genuinely love your merchandise
@The_Professor_S_5 жыл бұрын
Flammable Maths Papa, I know that me and my fellow mathematicians typically just meme in the comments but seriously, thank you for keeping my love of mathematics alive (despite my university’s maths department’s desperate attempts to make everyone hate maths). I always enjoy your videos, how you can educate and entertain at the same time. Thank you for what you do
@aymenkhiar10854 жыл бұрын
very nice inthégral bro et loks layks goods
@jimklm35604 жыл бұрын
It was just incredible, i hate it when i see a solution that i could figure out myself (but quitted trying too soon).
@mr.champion73045 жыл бұрын
2:21, actually, this can be converted to a geometric series starts at k=1(which is, the sum of z^k, from k=1 to infinity). Since the formula for that is z / (1-z). Then, the summation can be moved outside of the integral. This gives us the integral of x*e^(-k*x) from 0 to infinity. As you can probably notice, this is the Laplace transform of x. So, the integral can be replaced with 1 / k^2. Now, this gives us the sum of 1 / k^2 from k=1 to infinity. Which it just pi^2/6.
@herrjonatan54364 жыл бұрын
Beautiful
@peterdriscoll40704 жыл бұрын
Go papa flamy. You inspire me.
@birupakhyaroychowdhury9745 жыл бұрын
Wow man.....just loved it.....!!!!😘😘😘
@ElDiarioLudita5 жыл бұрын
I have so much homework... so, one video of integrals arent be bad.
@haradhandatta48245 жыл бұрын
Thanks. Nicely Explained.
@wilhelmsarosen47355 жыл бұрын
Did a change of variables after the geometric series trick, ended up with the Besel sum times an integral that went to 1 nicely, despite the fact that it involved zero times infinity.
@koenth23595 жыл бұрын
WOW Flammy is back! Welcome to anor video with the oiler macaroni consent.
@ANunes064 жыл бұрын
"We can actually Fubini this shit." XD
@TheNinjaDwarfBiker5 жыл бұрын
Boi what are you adding in that big sigma.
@2neutrino5 жыл бұрын
integral of x/(e^x+1) from 0 to infinity = pi^2/12 coool
@atraps78825 жыл бұрын
Can papa flammy bless me for my engineering entrance exam tmr???
@nootums5 жыл бұрын
Mains? All the best!!
@shahinaa74255 жыл бұрын
Lol. That's what the flammily does, watch an upload with jee mains tomorrow.
@GeodesicBruh5 жыл бұрын
remember that Pi=e=2
@pradiptabora5185 жыл бұрын
Papa there is a simpler solution by making the substitution e^x=u. After simplifying the integral that we obtain we find that it equals intergal from 0 to 1 of ln u/u-1. This is equal to intergal from 0 to 1 of ln(1-u)/(-u). Expanding ln(1-u) by its Taylor series we easily get Zeta2 as the answer.
@anasazeem20052 ай бұрын
I too did it this way. Don't know why very few did this way.
@SloomFusion5 жыл бұрын
PAPA could you do this bad boi ? Integral from 0 to infinity of (sinx)^2/(1+x^2)
@cornetapluspluseleven92965 жыл бұрын
it evaluates to 177013
@tiagonata17343 жыл бұрын
Me, watching this without even finishing limits: I can't understand shit but I like it
@shandyverdyo76885 жыл бұрын
Hey, are you Jens Fehlau? I saw u on quora's recommendation for no reason. LMAO.
@mohammedal-haddad26525 жыл бұрын
I enjoyed this integration as much as enjoy my favorite movie.
@AndrewDotsonvideos5 жыл бұрын
yata desu ne!
@benjaminmcc54725 жыл бұрын
Just about to watch a Great Video
@perch34284 жыл бұрын
Isn't the integral from 0 to infinity of (x*e^(-kx)dx) the laplace transform of x? Wouldn't that be an option? (It's 1/(k^2) too soooooo)
@1nd93dk34 жыл бұрын
1st anniversary of this video!
@aengusroberts26855 жыл бұрын
Papa Flammy gonna prove the Riemann Hypothesis next video confirmed?
@aengusroberts26855 жыл бұрын
@@PapaFlammy69 Did you run out of margin space on the chalkboard?
@Sarika4284 жыл бұрын
Who else first saw the pi-loroid and thought that 3 blue 1 brown is here, then realised it isn't true, but still stayed for it?😀
@gloystar4 жыл бұрын
5:02 Very smart move.
@process69965 жыл бұрын
You really should get into probability. I think you'd really enjoy it.
@neilgerace3555 жыл бұрын
Probably
@rot60155 жыл бұрын
@@neilgerace355 i love you
@griffisme48334 жыл бұрын
Probability is the worst part of math.
@Ryan-gq2ji4 жыл бұрын
@@griffisme4833 I love you
@guillaumedeplus77275 жыл бұрын
Nice video as usual, i was thinking of another factorisation : x/e^x * 1/(1-e^-x) then using taylor series, you get the same result
@rot60155 жыл бұрын
madlad
@williamallen91455 жыл бұрын
This can be a quick infinity boi, any integral of this form with x^(s-1) on top is Gamma(s)Zeta(s). xD
@nellvincervantes32235 жыл бұрын
You should also make vids about physics. Named Flammable Physics. Or even chemistry.
@nellvincervantes32235 жыл бұрын
Thanks sir.
@TheNachoesuncapo5 жыл бұрын
What a watch ma boi
@memyselfandi90513 жыл бұрын
I think that I love 😂❤️
@jony77795 жыл бұрын
I really want one of those infinity boi shirts, but it seems like the merch site can't ship to where I live (California, USA)? Can I still get one somehow?
@OtiumAbscondita5 жыл бұрын
What is that watch you have?
@oraz.5 жыл бұрын
Papa bless
@user-kr6bp4zi2y5 жыл бұрын
e to the negative teeth power /o/
@shandyverdyo76885 жыл бұрын
More integral equation pleaseeeeeeee!
@harrygreen98045 жыл бұрын
Papa
@Ryan-gq2ji4 жыл бұрын
5:32 wait what the hell you can do that??
@anmoldeepsingh92814 жыл бұрын
Yup k and x are independent
@danpoles28645 жыл бұрын
where do you learn all this??? do you have books or lectures that you could recommed for me to learn??
@kizyzo13484 жыл бұрын
That's actually the Bose Integral at n=2.
@PapaFlammy694 жыл бұрын
sure
@kizyzo13484 жыл бұрын
holy cow I got a heart and reply from papa!!! My day is made :)
@PapaFlammy694 жыл бұрын
Sure thing my Kizyzo boi :p
@juanpiedrahita-garcia51385 жыл бұрын
could you use complex analysis?
@atrimandal43245 жыл бұрын
Integrals ❤️❤️
@hebrewwolf65404 жыл бұрын
Where did you buy that watch? It looks great. Maybe you should contact the manufacturer and have them sponsor you 🤣
@averagegamer9513 Жыл бұрын
The captions at 10:15.
@khemirimoez86615 жыл бұрын
Consider my breath taken
@carlosv.ramirezibanez33055 жыл бұрын
GOD
@mudkip_btw4 жыл бұрын
This video helped me solve the same integeral but with x^2, gonna start doing more integrals i think, getting kinda rusty during the holidays >.< Also need to learn some of the rules like interchanging summation & integration more uhm.. yuck.. "rigorously"
@mohammedahmed71265 жыл бұрын
awesooooome
@ShreyAroraev35 жыл бұрын
test: if papa flamy likes this, hes def using a bot
@keithmasumoto96985 жыл бұрын
すごい! 登録しました。
@leafbaguette5 жыл бұрын
6:26 I'd've used papa feynman, but okay
@TheAvoca19895 жыл бұрын
good
@juanjuan-mi4gi3 жыл бұрын
Bose Einstein integral for s=2.....!
@juanjuan-mi4gi3 жыл бұрын
x= 2
@chikyushimin5 жыл бұрын
It would have been a lot easier if you had set the integral from 5:54 to be equal to the derivative with respect to k of the integral of e^-kx, using Leibniz's rule, and then solve the integral (which is 1/k) and take the derivative and ends up with the Basel Summation.
@hyunwoopark92415 жыл бұрын
I am a simple person I saw RANDOLPH I clicked
@arkitray15434 жыл бұрын
Can u evaluate thia integral but instead of the x in the numerator can u have x^2, I want to see what a general result would be....
@PapaFlammy694 жыл бұрын
Alreafy done! Check the integrals Playlist :)
@arkitray15434 жыл бұрын
Is it the zeta gamma extravaganza
@excavator699315 жыл бұрын
Why didn't you just taylor expand e^x, cancel the two 1's then cancel the x's on the top and bottom, and just take the a.derrivative of a power
@excavator699315 жыл бұрын
@@PapaFlammy69 is this really putnam btw?
@excavator699315 жыл бұрын
@@PapaFlammy69 But great video as always
@parthpawar78375 жыл бұрын
Papa putting those "Putnam" in the title again :v
@abhinavmishra89234 жыл бұрын
I'm in India, how can i buy it??
@PapaFlammy694 жыл бұрын
My Merch? Over on my Teespring shop
@nathanielh41315 жыл бұрын
Did you check the interval of convergence for the geometric series? ;)
@benjaminmcc54725 жыл бұрын
Papa Flammy you should do some question from the AIME exam!! Would be cool to see how you approach them.
do you know how to solve that equation algebratically: (4x+2)^(1/x) = 2. thanks for that ;) great stuff anyway
@ДмитроПрищепа-д3я5 жыл бұрын
2^x=4x+2 k = -x - 1/2 2^(-k - 1/2) = -4k 2^(-k) = -4k*2^(1/2) 2^k = -1/(k*2^5/2) k*2^k = -2^(-5/2) k = W(-2^(-5/2)ln(2))/ln(2) x = -W(-2^(-5/2)ln(2))/ln(2) - 1/2 No solutions in elementary functions as far as I know. The Lambert's W-function gives us two solutions here.
@triton626745 жыл бұрын
𝗪0𝗡de𝗥𝗙𝗨l
@TheRedfire215 жыл бұрын
mmm tasty basel boiiii
@giorgosbountouris67754 жыл бұрын
i cant understand complex calculus
@yajurphullera93965 жыл бұрын
Why is there -1/12 on your tshirt?
@davydeprez6425 жыл бұрын
Why dont you solve this using complex integration? instead of using x use z^2 (yes squared, else you wil get a zero) and chose a rectangular contour with hight 2*pi*i
@davydeprez6425 жыл бұрын
so the function for the contour should be z^2/(e^z-1)
@davydeprez6425 жыл бұрын
this technique will also work for every odd power of x i think :)
@benjaminmcc54725 жыл бұрын
Infinity Boi 8
@sebastienlouchart22705 жыл бұрын
Great video. I'm disappointed you don't take the steps to prove 1) the integral actually converge 2) you may express 1/1-exp(-x) as a serie and 3) you may exchange sum and integral signs. I guess it'd be boring and make a video too long, though. Anyway, I gave it a try myself and here's my approach (it's long), I give another more direct approach at the end. I = int (0, inf) x/exp(x)-1 dx f(x) = x/exp(x)-1 fonction f is continuous over ]0, inf[ => can be integrated over it I isn't improper at x=0 because lim 1/f(x) = lim exp(x)-1/x = lim exp(x)-exp(x0)/x-0 = exp(0) = 1 => f is continuous at 0 with f(0)=1 I is improper at x->inf x > 1 => f'(x) < 0 => f is strictly decreasing over [1, +inf[ x > 1 => f(x) > 0 let g(x) = 1/x2 lim (x->inf) f(x)/g(x) = lim x3/exp(x)-1 = 0 => f(x) = o(g(x)) f and g are of same sign (positif) for x > 1, g is riemann-integrable over [1, +inf[ with a convergent integral (Riemann) => a domination criterion is therefore met => I converges Calculation: I = int(0, inf) x.exp(-x)/1-exp(-x) dx we write 1/1-exp(-x) as a serie which is the geometric serie with ratio exp(-x) that converges for any x > 0 (the case x=0 is pesky) 1/1-exp(-x) = sum(k=0, inf) exp(-kx) I = int(0, inf) x.exp(-x).sum(k=0, inf) exp(-kx) dx we put back the term exp(-x) into the serie and we rescale the index I = int(0, inf) x.sum(k=0, inf) exp(-(k+1)x) dx = int(0, inf) x. sum(j=1, inf) exp(-jx) dx we put back the term x into the serie as well (the serie is still convergent as exp(-kx) is always negligible before x I = int(0, inf) sum(j=1, inf) x.exp(-jx) dx We then prove the serie to be uniformly convergent before applying the serie-integral inversion theorem The serie sum(j=1, inf) x exp(-jx) converges uniformly toward f because norme_sup (fn(x) - f(x)) = sup(abs(x.exp(-jx) - x/exp(x)-1) = sup(abs(x.exp(-jx)(exp(x)-1) - x // exp(x)-1) = sup(abs(x(exp(-jx)(exp(x)-1) - 1) // exp(x)-1) = 0 Let's exchange sum and integral signs I = sum(j=1, inf) int(0, inf) x.exp(-jx) dx let u=jx, x = u/j et dx = du/j, bounds don't change I = sum(j=1, inf) int(0, inf) u/j.exp(-u) du/j = sum(j=1, inf) 1/j2 int(0, inf) u.exp(-u) du we see int(0, inf) u.exp(-u) du = G(2) = 1! = 1 (Euler's Gamma function and factorial as you pointed) I = sum(j=1, inf) 1/j2 = z(2) = pi2/6 (Riemann's / Basel Problem as you also pointed) Another way let zeta(x, q) = sum(k=0, inf) (k + q)^-x for q natural integer and x real we prove that zeta(x, q)G(x) = int(0, inf) t^(x-1)exp(-tq)/1-exp(-t) dt immediately, it comes that I = zeta(2)G(2) with q=1 et x=2
@tszhanglau57475 жыл бұрын
Hot. How about other values of zeta function times gamma function?
@postbodzapism5 жыл бұрын
Can you do a video on \zeta(4)
5 жыл бұрын
Halfway, it would be faster if you used the gamma function or Laplace transforms. To learn more visit the Mathematical Facts group on Facebook.
5 жыл бұрын
@@PapaFlammy69 Nice. Congrats on your channel. I am a mathematician from Brazil who loves solving integrals and series.
@surajpalsingh10115 жыл бұрын
I got zero as the answer of this question
@yvangogh66555 жыл бұрын
>mfw sugoi desu
@juanpiedrahita-garcia51385 жыл бұрын
Can't you just use some complex analysis?
@ShreyAroraev35 жыл бұрын
pi creatures!!!
@ShreyAroraev35 жыл бұрын
do u use a bot to like everything? excellent move!
@ShreyAroraev35 жыл бұрын
Your channel is amazing! Where did you study math from?
@JCResDoc945 жыл бұрын
🔥🔰-ʕ•ᴥ•ʔ-🗡💜! ALL COMMENTS = ENDORSEMENTS! I AM A COMMENT!
@daviskeene3635 жыл бұрын
Wow I'm here early...
@BC-zn2ur5 жыл бұрын
Can Papa Flammy bless me for my exam in 3 hours?
@靳歙-q9w5 жыл бұрын
OMG WTF QAQ I don't no what you say??
@alse725 жыл бұрын
Have you ever thought about doing videos about tetration and other 🅱️S like that?