WONDERFUL 𝜋ntegral! A Putnam Extravaganza [ Basel Problem Integral Representation ]

  Рет қаралды 56,663

Flammable Maths

Flammable Maths

Күн бұрын

Пікірлер: 167
@turtlellamacow
@turtlellamacow 5 жыл бұрын
The cheap physicist way of doing it: recognize it as the integral representation of the Bose-Einstein function g_s(z) with s = 2 and z = 1 (times an irrelevant Gamma(2), which is one). As is clear from the series definition of the functions, g_s(1) = Zeta(s). Hence the integral is Zeta(2)!
@iridium8562
@iridium8562 4 жыл бұрын
Hahaha omg i literally recognized it from the thumbnail! Shit’s in my blood! 😂
@oni8337
@oni8337 3 жыл бұрын
ik this identity from blackpenredpen lol
@pranayvenkatesh8815
@pranayvenkatesh8815 5 жыл бұрын
Exam day after tomorrow. Hm.... nah, 13 minutes of Papa Flammy can't hurt....
@shahinaa7425
@shahinaa7425 5 жыл бұрын
Same here lol
@pranayvenkatesh8815
@pranayvenkatesh8815 5 жыл бұрын
JEE mains in 2 days, why am i watching putnam exam solns? The result is absolutely beautiful tho, no doubt.
@parthpawar7837
@parthpawar7837 5 жыл бұрын
@@pranayvenkatesh8815 Same here boi. Which shift?
@ashuthoshbharadwaj6703
@ashuthoshbharadwaj6703 5 жыл бұрын
lolol #flammyflammily
@muneebahmad7729
@muneebahmad7729 5 жыл бұрын
@@pranayvenkatesh8815 me too i have my exams tomorrow 😂
@karolakkolo123
@karolakkolo123 5 жыл бұрын
*Papa Flammy:* This integral is breathtaking! *Keanu Reeves:* YOU are breathtaking!!
@tommasobruggi6614
@tommasobruggi6614 5 жыл бұрын
This is absolutely wonderful. I can already imagine sort of what is about to come and I can’t wait!!
@pedrolourenco9520
@pedrolourenco9520 5 жыл бұрын
I'm guessing the answer is π^2/6 (I haven't watched it yet), blame Dr.Peyam for that :D (he made a video of an integral very similar to this one but the x term is raised to the power of s, where s is a complex number, it's great
@mark_tilltill6664
@mark_tilltill6664 4 жыл бұрын
I feel so grateful that as an old man, i get to see this before I die. I can hear the symphony that you conduct. Thank you!
@zaheeruddin323
@zaheeruddin323 5 жыл бұрын
Gauss or GauB xd
@livedandletdie
@livedandletdie 5 жыл бұрын
Let me help you, Gauss or Gauß
@zaheeruddin323
@zaheeruddin323 5 жыл бұрын
@@livedandletdie Yeah actually hace a spanish keyboard but i can do this, ñçÜl·l xd
@kirasguardian6328
@kirasguardian6328 5 жыл бұрын
Do we have time for *_BONUS INTEGRAL_*?
@CarlosGomes-yc3nm
@CarlosGomes-yc3nm 4 жыл бұрын
Love you papa, love me back
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
@CarlosGomes-yc3nm
@CarlosGomes-yc3nm 4 жыл бұрын
Thanks papa
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
*Papaaaaaa* It was great, I want to watch it again and again! Great Thank you so much *My Dear Papa Flammy Mathy*
@Rich-Richards
@Rich-Richards 5 жыл бұрын
I’m quite new to mathematics of this level - this explanation was brilliant. I’m glad you deviate into simpler(ish) problems.
@patricksalhany8787
@patricksalhany8787 5 жыл бұрын
You remind me of our friend who said "...and wheeler!!!".
@thelightningwave
@thelightningwave 5 жыл бұрын
Hey, I saw this same integral on Let's Solve Math problems. It was done almost the same exact way. Papa Flammy is doing so many integral videos I'm starting to see repeats from other integral solving KZbinrs.
@davidsonjoseph8991
@davidsonjoseph8991 5 жыл бұрын
HMMMMM EXPOSÉ?
@jensbauer1141
@jensbauer1141 4 жыл бұрын
I love your integeral science!
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
:D
@505steel
@505steel 4 жыл бұрын
That was beautiful
@shayangfkk7948
@shayangfkk7948 3 жыл бұрын
back in 17s if you where a master of this integarahl you would be an amazing physicist . this thing is everywhere in stat mech .
@The_Professor_S_
@The_Professor_S_ 5 жыл бұрын
Gotta love the merch Papa Flammy is putting out. That’s not a meme, I genuinely love your merchandise
@The_Professor_S_
@The_Professor_S_ 5 жыл бұрын
Flammable Maths Papa, I know that me and my fellow mathematicians typically just meme in the comments but seriously, thank you for keeping my love of mathematics alive (despite my university’s maths department’s desperate attempts to make everyone hate maths). I always enjoy your videos, how you can educate and entertain at the same time. Thank you for what you do
@aymenkhiar1085
@aymenkhiar1085 4 жыл бұрын
very nice inthégral bro et loks layks goods
@jimklm3560
@jimklm3560 4 жыл бұрын
It was just incredible, i hate it when i see a solution that i could figure out myself (but quitted trying too soon).
@mr.champion7304
@mr.champion7304 5 жыл бұрын
2:21, actually, this can be converted to a geometric series starts at k=1(which is, the sum of z^k, from k=1 to infinity). Since the formula for that is z / (1-z). Then, the summation can be moved outside of the integral. This gives us the integral of x*e^(-k*x) from 0 to infinity. As you can probably notice, this is the Laplace transform of x. So, the integral can be replaced with 1 / k^2. Now, this gives us the sum of 1 / k^2 from k=1 to infinity. Which it just pi^2/6.
@herrjonatan5436
@herrjonatan5436 4 жыл бұрын
Beautiful
@peterdriscoll4070
@peterdriscoll4070 4 жыл бұрын
Go papa flamy. You inspire me.
@birupakhyaroychowdhury974
@birupakhyaroychowdhury974 5 жыл бұрын
Wow man.....just loved it.....!!!!😘😘😘
@ElDiarioLudita
@ElDiarioLudita 5 жыл бұрын
I have so much homework... so, one video of integrals arent be bad.
@haradhandatta4824
@haradhandatta4824 5 жыл бұрын
Thanks. Nicely Explained.
@wilhelmsarosen4735
@wilhelmsarosen4735 5 жыл бұрын
Did a change of variables after the geometric series trick, ended up with the Besel sum times an integral that went to 1 nicely, despite the fact that it involved zero times infinity.
@koenth2359
@koenth2359 5 жыл бұрын
WOW Flammy is back! Welcome to anor video with the oiler macaroni consent.
@ANunes06
@ANunes06 4 жыл бұрын
"We can actually Fubini this shit." XD
@TheNinjaDwarfBiker
@TheNinjaDwarfBiker 5 жыл бұрын
Boi what are you adding in that big sigma.
@2neutrino
@2neutrino 5 жыл бұрын
integral of x/(e^x+1) from 0 to infinity = pi^2/12 coool
@atraps7882
@atraps7882 5 жыл бұрын
Can papa flammy bless me for my engineering entrance exam tmr???
@nootums
@nootums 5 жыл бұрын
Mains? All the best!!
@shahinaa7425
@shahinaa7425 5 жыл бұрын
Lol. That's what the flammily does, watch an upload with jee mains tomorrow.
@GeodesicBruh
@GeodesicBruh 5 жыл бұрын
remember that Pi=e=2
@pradiptabora518
@pradiptabora518 5 жыл бұрын
Papa there is a simpler solution by making the substitution e^x=u. After simplifying the integral that we obtain we find that it equals intergal from 0 to 1 of ln u/u-1. This is equal to intergal from 0 to 1 of ln(1-u)/(-u). Expanding ln(1-u) by its Taylor series we easily get Zeta2 as the answer.
@anasazeem2005
@anasazeem2005 2 ай бұрын
I too did it this way. Don't know why very few did this way.
@SloomFusion
@SloomFusion 5 жыл бұрын
PAPA could you do this bad boi ? Integral from 0 to infinity of (sinx)^2/(1+x^2)
@cornetapluspluseleven9296
@cornetapluspluseleven9296 5 жыл бұрын
it evaluates to 177013
@tiagonata1734
@tiagonata1734 3 жыл бұрын
Me, watching this without even finishing limits: I can't understand shit but I like it
@shandyverdyo7688
@shandyverdyo7688 5 жыл бұрын
Hey, are you Jens Fehlau? I saw u on quora's recommendation for no reason. LMAO.
@mohammedal-haddad2652
@mohammedal-haddad2652 5 жыл бұрын
I enjoyed this integration as much as enjoy my favorite movie.
@AndrewDotsonvideos
@AndrewDotsonvideos 5 жыл бұрын
yata desu ne!
@benjaminmcc5472
@benjaminmcc5472 5 жыл бұрын
Just about to watch a Great Video
@perch3428
@perch3428 4 жыл бұрын
Isn't the integral from 0 to infinity of (x*e^(-kx)dx) the laplace transform of x? Wouldn't that be an option? (It's 1/(k^2) too soooooo)
@1nd93dk3
@1nd93dk3 4 жыл бұрын
1st anniversary of this video!
@aengusroberts2685
@aengusroberts2685 5 жыл бұрын
Papa Flammy gonna prove the Riemann Hypothesis next video confirmed?
@aengusroberts2685
@aengusroberts2685 5 жыл бұрын
@@PapaFlammy69 Did you run out of margin space on the chalkboard?
@Sarika428
@Sarika428 4 жыл бұрын
Who else first saw the pi-loroid and thought that 3 blue 1 brown is here, then realised it isn't true, but still stayed for it?😀
@gloystar
@gloystar 4 жыл бұрын
5:02 Very smart move.
@process6996
@process6996 5 жыл бұрын
You really should get into probability. I think you'd really enjoy it.
@neilgerace355
@neilgerace355 5 жыл бұрын
Probably
@rot6015
@rot6015 5 жыл бұрын
@@neilgerace355 i love you
@griffisme4833
@griffisme4833 4 жыл бұрын
Probability is the worst part of math.
@Ryan-gq2ji
@Ryan-gq2ji 4 жыл бұрын
@@griffisme4833 I love you
@guillaumedeplus7727
@guillaumedeplus7727 5 жыл бұрын
Nice video as usual, i was thinking of another factorisation : x/e^x * 1/(1-e^-x) then using taylor series, you get the same result
@rot6015
@rot6015 5 жыл бұрын
madlad
@williamallen9145
@williamallen9145 5 жыл бұрын
This can be a quick infinity boi, any integral of this form with x^(s-1) on top is Gamma(s)Zeta(s). xD
@nellvincervantes3223
@nellvincervantes3223 5 жыл бұрын
You should also make vids about physics. Named Flammable Physics. Or even chemistry.
@nellvincervantes3223
@nellvincervantes3223 5 жыл бұрын
Thanks sir.
@TheNachoesuncapo
@TheNachoesuncapo 5 жыл бұрын
What a watch ma boi
@memyselfandi9051
@memyselfandi9051 3 жыл бұрын
I think that I love 😂❤️
@jony7779
@jony7779 5 жыл бұрын
I really want one of those infinity boi shirts, but it seems like the merch site can't ship to where I live (California, USA)? Can I still get one somehow?
@OtiumAbscondita
@OtiumAbscondita 5 жыл бұрын
What is that watch you have?
@oraz.
@oraz. 5 жыл бұрын
Papa bless
@user-kr6bp4zi2y
@user-kr6bp4zi2y 5 жыл бұрын
e to the negative teeth power /o/
@shandyverdyo7688
@shandyverdyo7688 5 жыл бұрын
More integral equation pleaseeeeeeee!
@harrygreen9804
@harrygreen9804 5 жыл бұрын
Papa
@Ryan-gq2ji
@Ryan-gq2ji 4 жыл бұрын
5:32 wait what the hell you can do that??
@anmoldeepsingh9281
@anmoldeepsingh9281 4 жыл бұрын
Yup k and x are independent
@danpoles2864
@danpoles2864 5 жыл бұрын
where do you learn all this??? do you have books or lectures that you could recommed for me to learn??
@kizyzo1348
@kizyzo1348 4 жыл бұрын
That's actually the Bose Integral at n=2.
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
sure
@kizyzo1348
@kizyzo1348 4 жыл бұрын
holy cow I got a heart and reply from papa!!! My day is made :)
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
Sure thing my Kizyzo boi :p
@juanpiedrahita-garcia5138
@juanpiedrahita-garcia5138 5 жыл бұрын
could you use complex analysis?
@atrimandal4324
@atrimandal4324 5 жыл бұрын
Integrals ❤️❤️
@hebrewwolf6540
@hebrewwolf6540 4 жыл бұрын
Where did you buy that watch? It looks great. Maybe you should contact the manufacturer and have them sponsor you 🤣
@averagegamer9513
@averagegamer9513 Жыл бұрын
The captions at 10:15.
@khemirimoez8661
@khemirimoez8661 5 жыл бұрын
Consider my breath taken
@carlosv.ramirezibanez3305
@carlosv.ramirezibanez3305 5 жыл бұрын
GOD
@mudkip_btw
@mudkip_btw 4 жыл бұрын
This video helped me solve the same integeral but with x^2, gonna start doing more integrals i think, getting kinda rusty during the holidays >.< Also need to learn some of the rules like interchanging summation & integration more uhm.. yuck.. "rigorously"
@mohammedahmed7126
@mohammedahmed7126 5 жыл бұрын
awesooooome
@ShreyAroraev3
@ShreyAroraev3 5 жыл бұрын
test: if papa flamy likes this, hes def using a bot
@keithmasumoto9698
@keithmasumoto9698 5 жыл бұрын
すごい! 登録しました。
@leafbaguette
@leafbaguette 5 жыл бұрын
6:26 I'd've used papa feynman, but okay
@TheAvoca1989
@TheAvoca1989 5 жыл бұрын
good
@juanjuan-mi4gi
@juanjuan-mi4gi 3 жыл бұрын
Bose Einstein integral for s=2.....!
@juanjuan-mi4gi
@juanjuan-mi4gi 3 жыл бұрын
x= 2
@chikyushimin
@chikyushimin 5 жыл бұрын
It would have been a lot easier if you had set the integral from 5:54 to be equal to the derivative with respect to k of the integral of e^-kx, using Leibniz's rule, and then solve the integral (which is 1/k) and take the derivative and ends up with the Basel Summation.
@hyunwoopark9241
@hyunwoopark9241 5 жыл бұрын
I am a simple person I saw RANDOLPH I clicked
@arkitray1543
@arkitray1543 4 жыл бұрын
Can u evaluate thia integral but instead of the x in the numerator can u have x^2, I want to see what a general result would be....
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
Alreafy done! Check the integrals Playlist :)
@arkitray1543
@arkitray1543 4 жыл бұрын
Is it the zeta gamma extravaganza
@excavator69931
@excavator69931 5 жыл бұрын
Why didn't you just taylor expand e^x, cancel the two 1's then cancel the x's on the top and bottom, and just take the a.derrivative of a power
@excavator69931
@excavator69931 5 жыл бұрын
@@PapaFlammy69 is this really putnam btw?
@excavator69931
@excavator69931 5 жыл бұрын
@@PapaFlammy69 But great video as always
@parthpawar7837
@parthpawar7837 5 жыл бұрын
Papa putting those "Putnam" in the title again :v
@abhinavmishra8923
@abhinavmishra8923 4 жыл бұрын
I'm in India, how can i buy it??
@PapaFlammy69
@PapaFlammy69 4 жыл бұрын
My Merch? Over on my Teespring shop
@nathanielh4131
@nathanielh4131 5 жыл бұрын
Did you check the interval of convergence for the geometric series? ;)
@benjaminmcc5472
@benjaminmcc5472 5 жыл бұрын
Papa Flammy you should do some question from the AIME exam!! Would be cool to see how you approach them.
@OtiumAbscondita
@OtiumAbscondita 5 жыл бұрын
ANIME exam?
@benjaminmcc5472
@benjaminmcc5472 5 жыл бұрын
@@OtiumAbscondita artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
@aeroDidge
@aeroDidge 5 жыл бұрын
do you know how to solve that equation algebratically: (4x+2)^(1/x) = 2. thanks for that ;) great stuff anyway
@ДмитроПрищепа-д3я
@ДмитроПрищепа-д3я 5 жыл бұрын
2^x=4x+2 k = -x - 1/2 2^(-k - 1/2) = -4k 2^(-k) = -4k*2^(1/2) 2^k = -1/(k*2^5/2) k*2^k = -2^(-5/2) k = W(-2^(-5/2)ln(2))/ln(2) x = -W(-2^(-5/2)ln(2))/ln(2) - 1/2 No solutions in elementary functions as far as I know. The Lambert's W-function gives us two solutions here.
@triton62674
@triton62674 5 жыл бұрын
𝗪0𝗡de𝗥𝗙𝗨l
@TheRedfire21
@TheRedfire21 5 жыл бұрын
mmm tasty basel boiiii
@giorgosbountouris6775
@giorgosbountouris6775 4 жыл бұрын
i cant understand complex calculus
@yajurphullera9396
@yajurphullera9396 5 жыл бұрын
Why is there -1/12 on your tshirt?
@davydeprez642
@davydeprez642 5 жыл бұрын
Why dont you solve this using complex integration? instead of using x use z^2 (yes squared, else you wil get a zero) and chose a rectangular contour with hight 2*pi*i
@davydeprez642
@davydeprez642 5 жыл бұрын
so the function for the contour should be z^2/(e^z-1)
@davydeprez642
@davydeprez642 5 жыл бұрын
this technique will also work for every odd power of x i think :)
@benjaminmcc5472
@benjaminmcc5472 5 жыл бұрын
Infinity Boi 8
@sebastienlouchart2270
@sebastienlouchart2270 5 жыл бұрын
Great video. I'm disappointed you don't take the steps to prove 1) the integral actually converge 2) you may express 1/1-exp(-x) as a serie and 3) you may exchange sum and integral signs. I guess it'd be boring and make a video too long, though. Anyway, I gave it a try myself and here's my approach (it's long), I give another more direct approach at the end. I = int (0, inf) x/exp(x)-1 dx f(x) = x/exp(x)-1 fonction f is continuous over ]0, inf[ => can be integrated over it I isn't improper at x=0 because lim 1/f(x) = lim exp(x)-1/x = lim exp(x)-exp(x0)/x-0 = exp(0) = 1 => f is continuous at 0 with f(0)=1 I is improper at x->inf x > 1 => f'(x) < 0 => f is strictly decreasing over [1, +inf[ x > 1 => f(x) > 0 let g(x) = 1/x2 lim (x->inf) f(x)/g(x) = lim x3/exp(x)-1 = 0 => f(x) = o(g(x)) f and g are of same sign (positif) for x > 1, g is riemann-integrable over [1, +inf[ with a convergent integral (Riemann) => a domination criterion is therefore met => I converges Calculation: I = int(0, inf) x.exp(-x)/1-exp(-x) dx we write 1/1-exp(-x) as a serie which is the geometric serie with ratio exp(-x) that converges for any x > 0 (the case x=0 is pesky) 1/1-exp(-x) = sum(k=0, inf) exp(-kx) I = int(0, inf) x.exp(-x).sum(k=0, inf) exp(-kx) dx we put back the term exp(-x) into the serie and we rescale the index I = int(0, inf) x.sum(k=0, inf) exp(-(k+1)x) dx = int(0, inf) x. sum(j=1, inf) exp(-jx) dx we put back the term x into the serie as well (the serie is still convergent as exp(-kx) is always negligible before x I = int(0, inf) sum(j=1, inf) x.exp(-jx) dx We then prove the serie to be uniformly convergent before applying the serie-integral inversion theorem The serie sum(j=1, inf) x exp(-jx) converges uniformly toward f because norme_sup (fn(x) - f(x)) = sup(abs(x.exp(-jx) - x/exp(x)-1) = sup(abs(x.exp(-jx)(exp(x)-1) - x // exp(x)-1) = sup(abs(x(exp(-jx)(exp(x)-1) - 1) // exp(x)-1) = 0 Let's exchange sum and integral signs I = sum(j=1, inf) int(0, inf) x.exp(-jx) dx let u=jx, x = u/j et dx = du/j, bounds don't change I = sum(j=1, inf) int(0, inf) u/j.exp(-u) du/j = sum(j=1, inf) 1/j2 int(0, inf) u.exp(-u) du we see int(0, inf) u.exp(-u) du = G(2) = 1! = 1 (Euler's Gamma function and factorial as you pointed) I = sum(j=1, inf) 1/j2 = z(2) = pi2/6 (Riemann's / Basel Problem as you also pointed) Another way let zeta(x, q) = sum(k=0, inf) (k + q)^-x for q natural integer and x real we prove that zeta(x, q)G(x) = int(0, inf) t^(x-1)exp(-tq)/1-exp(-t) dt immediately, it comes that I = zeta(2)G(2) with q=1 et x=2
@tszhanglau5747
@tszhanglau5747 5 жыл бұрын
Hot. How about other values of zeta function times gamma function?
@postbodzapism
@postbodzapism 5 жыл бұрын
Can you do a video on \zeta(4)
5 жыл бұрын
Halfway, it would be faster if you used the gamma function or Laplace transforms. To learn more visit the Mathematical Facts group on Facebook.
5 жыл бұрын
@@PapaFlammy69 Nice. Congrats on your channel. I am a mathematician from Brazil who loves solving integrals and series.
@surajpalsingh1011
@surajpalsingh1011 5 жыл бұрын
I got zero as the answer of this question
@yvangogh6655
@yvangogh6655 5 жыл бұрын
>mfw sugoi desu
@juanpiedrahita-garcia5138
@juanpiedrahita-garcia5138 5 жыл бұрын
Can't you just use some complex analysis?
@ShreyAroraev3
@ShreyAroraev3 5 жыл бұрын
pi creatures!!!
@ShreyAroraev3
@ShreyAroraev3 5 жыл бұрын
do u use a bot to like everything? excellent move!
@ShreyAroraev3
@ShreyAroraev3 5 жыл бұрын
Your channel is amazing! Where did you study math from?
@JCResDoc94
@JCResDoc94 5 жыл бұрын
🔥🔰-ʕ•ᴥ•ʔ-🗡💜! ALL COMMENTS = ENDORSEMENTS! I AM A COMMENT!
@daviskeene363
@daviskeene363 5 жыл бұрын
Wow I'm here early...
@BC-zn2ur
@BC-zn2ur 5 жыл бұрын
Can Papa Flammy bless me for my exam in 3 hours?
@靳歙-q9w
@靳歙-q9w 5 жыл бұрын
OMG WTF QAQ I don't no what you say??
@alse72
@alse72 5 жыл бұрын
Have you ever thought about doing videos about tetration and other 🅱️S like that?
@alse72
@alse72 5 жыл бұрын
@@PapaFlammy69 yes^yes^yes^... = -W(-ln(yes)) /ln(yes)
ZETA IN DISGUISE- An Awesome Floor Function Integral!
11:23
Flammable Maths
Рет қаралды 12 М.
Triple kill😹
00:18
GG Animation
Рет қаралды 12 МЛН
Perfect Pitch Challenge? Easy! 🎤😎| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 36 МЛН
an A5 Putnam Exam integral for calc 2 students
19:10
blackpenredpen
Рет қаралды 426 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
This Integral is Nuts
23:03
Flammable Maths
Рет қаралды 81 М.
2022's Biggest Breakthroughs in Math
11:57
Quanta Magazine
Рет қаралды 647 М.