try to create an angle of measure 69°. My solution: 69=60+(108-90)/2, construct a pentagon, and a square inside it, then the difference between those angles is 108-90=18°, bisect it and you get an angle 9° and now just construct a equilateral triangle.
@SuperYoonHo2 жыл бұрын
Gravity: "Exists" Goats: no LOL!!!
@marienbad22 жыл бұрын
11:28 Death Star begins to appear...
@004chestnut82 жыл бұрын
Bring back the enthusiastic intros papa
@Simon-hy2fh2 жыл бұрын
Papa draw circles using a compass. My teachers always used the mouse cable 🤣
@mav38952 жыл бұрын
These titles have millions of views type of potentiel
@marpl75112 жыл бұрын
i was wondering, where can i buy a blackboard like yours? and the same chalk you have?
@theamazingworldofgusball18522 жыл бұрын
Nice golden video. What about right triangle Phi^(1/2), Phi, Phi^(3/2) next time?
@Bushviking2 жыл бұрын
Lol. Keep laughing at "... golden ratio faah". Keep up the good vids papa flammy!
@howdy8322 жыл бұрын
For me it's always "x and wahh"
@abbieq112 жыл бұрын
that was so cool! but when you drew those two triangles together and mentioned the am-gm-hm inequality I literally cried. why is it so connected?? why does the golden ratio come up in everything? why does that inequality come up everywhere? it makes me overcome with emotion. also never feel sorry for your compass "keeping us waiting," you're always a lot of fun to watch regardless! no one ever complained that they saw too much of you :)
@chengzhou87112 жыл бұрын
I’m a simple man. I see the funny shape, I click
@HershO.2 жыл бұрын
They really are GOATS.
@dharunrahul17002 жыл бұрын
Oh. I was more preoccupied with the t-shirt , can you say again?
@tszhanglau57472 жыл бұрын
is there an "algebruh" t-shirt?
@kono1522 жыл бұрын
father flammable
@moaazmazen89442 жыл бұрын
Did anyone ever told you that you look like Claude E. Shannon?? Also maybe an information theory video?
@99capsfan2 жыл бұрын
Father flammable
@orendubin33922 жыл бұрын
Would love if you would do a video on the following problem that seems trivial at first sight: Lim n->inf cos(n)^(n²) When n is a natural number If anyone in the comments has an idea I'd love to hear it
@lapiscarrot3557 Жыл бұрын
That definitely sounds interesting. I'm pretty sure it doesn't converge, but I'm not sure. Using the continued fraction for pi, successive numerators should increase as O(k^n), while the error multiplied by the denominator should decrease as O(k^(-n)), where k=e^beta≈3.2758, the Khinchin-Lévy constant. Because of this, a limit could be taken that approaches 1-½(error*n/pi)²n², but that gives 1-O(1). I'm assuming that such a limit would sporadically take any value from 0 to 1, and not converge, meaning the limit as a whole wouldn't converge.
@orendubin3392 Жыл бұрын
@@lapiscarrot3557 I have to admit, you are definitely in a higher level of mathematics than me, as I understood the words you wrote but not the meaning so much. If you are correct, I find it very interesting that such a simple limit involves these types of calculations.
@aditaggarwal3486 Жыл бұрын
root pi by pythagoras and the fact that (phi)^2 = phi + 1?
@terryr90522 жыл бұрын
that is one accursed black board!
@xaytana2 жыл бұрын
You should invest in a beam compass, it'll be much less of a pain in the ass than the string and magnets are.
@lucidmath54812 жыл бұрын
papa flammy, i wanted to know ur thoughts on terrence tao (underrated, overrated or accurately rated?)
@ezras79972 жыл бұрын
Asstounding rationale
@mars29792 жыл бұрын
こんにちは
@jorex68162 жыл бұрын
That means hello???
@mars29792 жыл бұрын
@@jorex6816 exactly!!
@achrafhmidi16892 жыл бұрын
Still waiting for RH solution
@chouayabdelali32412 жыл бұрын
hahahhahahahahahaha
@achrafhmidi16892 жыл бұрын
@@chouayabdelali3241 hhhhhhhh-hhhhhh actually I haven't thought about anything else at that moment
@achrafhmidi16892 жыл бұрын
@@chouayabdelali3241 broo Malk ghbrti without any trace at all