Its interesting, but without an explanation of what hyperbolic space is i found most of this to be a bit trivial since i couldn't relate the math to anything.
9 жыл бұрын
Numberphile did a video about hyperbolic space some time ago.
@ragnkja9 жыл бұрын
xisumavoid Will it help you if I tell you that kale is essentially a hyperbolic area curled up into euclidean space?
@dzaima47379 жыл бұрын
Wow. Did not expect Xisuma commenting on a numberphile video...
@spinachstealer9 жыл бұрын
xisumavoid Well, i just went from watching Xisuma's latest episode to here, only to find out I can't get away.
@blockchaaain9 жыл бұрын
xisumavoid The most relatable part to me was the drawing around 4:25. If I interpret it correctly, the field is still a constant angle wide. Applying that to the golf scenario, you see that a constant 1 degree angle error becomes an exponentially growing error in horizontal distance. Whereas in Euclidean geometry (e.g. the regular baseball field), the horizontal distance grows linearly for a constant angle. If you want something to relate to, consider the elliptical geometry of spheres. For example, great circles (the fastest route for air travel can look like an unnecessarily long curve on a normal map). Or speaking of golf, consider that you are at the 'north pole' of a sphere and putt the ball such that it will roll along the ground until it reaches the latitude of the hole. If your putt is off by 1 degree, the ball will be 1 degree of longitude off in the end. The corresponding distance along the surface that your ball is away from the hole varies non-linearly with latitude (and distance putted). To the point that, if your hole is on the opposite hemisphere, the distance error will start to reduce. And if your hole is on the south pole (opposite point of the sphere from you), you will obviously make the shot no matter which direction you hit. More to the point, a hole very close to the south pole would result in a very small distance error even if you have a huge error in shot angle. Again, this is elliptical geometry, not hyperbolic, but it's non-euclidean and actually relatable!
@superliro1009 жыл бұрын
A good way to imagine hyperbolic space is this: in the middle you have a special height. And the further you go to the "boundary" the smaller you get. Then your steps would be smaller and you would never reach the limit. Also, if you want to make a shortcut, like brady suggested, you wpuld get further away from the middle, therefore you would get smaller, and the way would take longer to go.
@MustSeto9 жыл бұрын
superliro100 I think this analogy actually helped me understand this a lot better. So it's like, the farther from the center you are, the harder travel is, such that going the shortest "distance" might take longer than making a detour towards the center so that travel is easier? Or, like looking down from on top of a mountain? Two paths that look like they are the same distance from your perspective (i.e., they both take up the same amount of your view) could actually be very different distances in real space, because things that are farther away look smaller from your perspective, so things that look like they are the same size from your perspective must be different sizes if they are different distances.
@Cold_Ham_on_Rye9 жыл бұрын
superliro100 Thankyou. I have watched all the number phile videos on this topic with no understanding. This explanation is so simple, I don't know why they never took the time to say this.
@NathanRichan9 жыл бұрын
superliro100 So it's actually impossible for the golf ball to reach the boundary? (Meaning there is no boundary?)
@MakayMurray9 жыл бұрын
superliro100 Your explanation made way more sense than the video. :)
@SpriteGuard9 жыл бұрын
Nathan Richan The boundary of the world doesn't exist, it's just a limit, but the boundary of the circular golf course certainly does.
@allanrempel4379 жыл бұрын
It seems like almost every euclidean sport would be fundamentally unplayable, as minor deviations compound exponentially. The question then is, can we invent a sport for hyperbolic geometry?
@SpriteGuard9 жыл бұрын
Penny Lane In what way do they suck? You can make the rules for a good game on virtually any regular grid.
@unvergebeneid9 жыл бұрын
Sprite Guard Alpha Squares either don't allow diagonal movement or you have that nasty factor of ~1.4142 that you either have to pretend doesn't exist or somehow incorporate in your game. Hexagons don't allow straight movement in one direction, although they do in the other. That's absurd if you think about it. Don't get me wrong, I like me my hex grids but _if_ octagons tessellated the Euclidean plane, suggesting a game on a hex grid would sound like the worst idea ever.
@jasonslade62599 жыл бұрын
Penny Lane Ok but a theoretical octagon 'grid' allows straight movement in 8 directions but you still can't move at, for example, 30 degrees from the 'horizontal'. You're always going to be forced to zig-zag and take a longer path when traveling towards the corners of any polygon grid. However, it is true that as you increase the number of sides of the polygon, these 'zig-zag' paths become closer and closer to linear. The logical course of action is, therefore, to use a spherical geometry. So basically just bring a ruler and forget the grid.
@unvergebeneid9 жыл бұрын
Jason Slade You can play your board games without me, sorry. I'm not going to calculate my ass off and get into fights about measurement inaccuracies with your brilliant continuous approach. I like me my discrete turn-based games thank you very much.
@SpriteGuard9 жыл бұрын
Penny Lane You can design a game to any grid with good results. Go only works on a 4-connected grid, Chess only on an 8-grid, there are lots of games that only work on a hex grid. In what game is the difference in scale of checkerboard axes actually relevant to anything?
@JLConawayII9 жыл бұрын
So in other words, hyperbolic golf is pretty much like normal golf is for me.
@awesomecow80927 жыл бұрын
Your profile picture fits that just right.
@robertyang43659 жыл бұрын
This video wasn't that... "straight"forward. Hahaha, see what I did there? ... I'll see myself out
@Suedocode9 жыл бұрын
Robert Yang If I bend you over, will that straighten you out?
@Runix19 жыл бұрын
Jeremy Joachim You can bend me over anytime ;) Nah, I'm already straight.
@fx4d9 жыл бұрын
Robert Yang Hyperbolic space is nothing but an exaggeration.
@mueezadam84384 жыл бұрын
Legend has it that Robert Yang is still on his way out
@lumi20304 жыл бұрын
not funny didn't laugh sorry :(
@dryued68749 жыл бұрын
Wait a second. Should there even be any confusion about the shortest path on the golf course, if light would travel in hyperbolic patterns, too, so you'd *see* that path as straight?
@ic85759 жыл бұрын
Dryued So for all we know we do exist in hyperbolic space.... ahem gravitational fields that warp time and space around them.
@TheHuesSciTech9 жыл бұрын
Dryued Spot on. This video is overly obsessed with the weirdness of Poincaré disk model used to visualise hyperbolic space -- if you were actually in hyperbolic space, everything would look normal (as long as you don't look too far) and you'd be able to play golf just fine.
@happmacdonald9 жыл бұрын
TheHue's SciTech It's still true that if you fire a shot far enough away from the hole (relative to the spatial curvature, which they totally never really addressed here, they just say "300". Okay, 300 whats? And how curved is the space in those units?) that being off by only one degree would put you only a few thousandths of a percent closer to the hole than shooting 180 degrees off would. You would experience this as trying to walk towards the hole and the imaginary line representing your optimal shot would veer far away, and eventually behind you compared to the imaginary line you are really following to get to your ball.
@TheHuesSciTech9 жыл бұрын
Happ MacDonald Absolutely, the translation from "300 feet" to "300" is a massive problem. Like I said in a separate comment here, that's equivalent to discussing elliptical geometry (think: the earth's surface) and translating "300 feet" to "300 radians", and concluding that if we lived on a sphere (imagine that) every golf shot would orbit the earth dozens of times.
@happmacdonald9 жыл бұрын
TheHue's SciTech That brings up an interesting point. Radian is absolutely a unit tied to the curvature of Riemannian/elliptical space. Do you know of any complement for hyperbolic spaces? The best idea I can come up with are along the lines of "the distance at which you can fit X non-overlapping equilateral triangles all sharing a vertex". I know that for X = 4 on a sphere that distance is π/2 radians, and for all distances in flat space X = 6. Is it a special unit like that which has to be plugged into those hyperbolic area and circumference equations? :o
@kindpotato8 жыл бұрын
They should make a game of golf computer game in hyperbolic space.
@dbolan6 жыл бұрын
There's a neat roguelike set in hyperbolic space called HyperRogue!
@pbj41844 жыл бұрын
CodeParade is making Hyperbolica. You can try that out once it's out
@bencressman61104 жыл бұрын
Instead of suggesting an unrelated hyperbolic game, I'm going to agree with you! There could be two versions - Euclidean golf translated into hyperbolic space (just a gag game basically, maybe it always tells you your distance from the hole and you just watch it get bigger with each stroke lol. Then you get powerups which increase accuracy but it still doesn't help 😂 ) and an actual playable version where the the distances are all super small. It's basically just tiny puts, but it's still super hard. Maybe there's a third version so that the player is scaled down to a size where the physics make more sense and you can actually drive.
@mrcat10433 жыл бұрын
On the apple App Store there’s pool and other things in 2d hyperbolic space called hyperbolic it’s pretty similar to golf
@АняКвасниця-к7д3 жыл бұрын
Sports are *impossible* in hyperbolic space.
@insu_na9 жыл бұрын
Brady you troll, actually used his drawing of the golfer :D Thanks you made my day with that :)
@DefinitelyNotNhanTho9 жыл бұрын
i don't understand baseball nor hyperspace but i still watch this video
@tehlolzfactor9 жыл бұрын
Minh Nhân Just want to correct a bit of your semantics if you don't mind. Hyperspace is a space beyond the dimensions we work in. So currently for us hyperspace is 4+ dimensions. Hyperbolic space is based on space which is bounded within the curvature of a circle. So I think you were referring to hyperbolic space based on the content of the video.
@DefinitelyNotNhanTho9 жыл бұрын
tehlolzfactor thanks i get it now
@TheHuesSciTech9 жыл бұрын
tehlolzfactor I know you two are trolling, but just to be clear -- you can travel in a straight line forever in hyperbolic space, and you never reach an "end" or "limit". The dotted circle on the page is just the end of the projection (which corresponds to infinity in the space).
@tehlolzfactor9 жыл бұрын
If you see my other comment on this page you will see that I do have a proper understanding of the topic and that I am indeed not trolling. I may have been a bit unclear when I wrote that hyperbolic space is "bounded" by a circle. My intended meaning is that an infinite plane in euclidean space becomes something of an "infinite circle plane" in hyperbolic space where the coordinates are shifted from cartesian to hyperbolic. I hope I have made myself clear here. Cheers.
@TheHuesSciTech9 жыл бұрын
tehlolzfactor OK sorry, I completely missed the point you were trying to make in your first post, I stand corrected, sorry. But hyperbolic space is definitely infinite; the only thing that's bounded here is the map/chart we might use to view it (in the case of this video, the Poincare disk model). Hyperbolic space: infinite. Poincare disk model: bounded by disk. I know you know all this already, but I think it's a very important distinction to keep very clear.
@sayresyDevino9 жыл бұрын
Really interesting, but in Hyberbolic space would you still be able to hear the WOOOOSH sound that this made as it went right over my head... [add] I guess it would have gone around my head...
@riley_bohr7 жыл бұрын
wow this is my real analysis professor at university of michigan, interesting stuff
@JustOneAsbesto9 жыл бұрын
Words cannot express how much I love this man's name. Jokes don't even need to be written. ... Coal mine. My sincerest apologies, Mr. Canary.
@controlequebrado44554 жыл бұрын
I dig it
@informationparadox3874 жыл бұрын
Ohhh bboooyyyy!!!😂😂👌👌
@migfed9 жыл бұрын
brady i still think that is still needed I full program about noon Euclidean geometries with a historic background included. I wouldn't mind at all if that video lasted 1 hour or even more.
@Sorc479 жыл бұрын
migfed That would be perfect!
@xenomann4429 жыл бұрын
migfed Agreed. There should be a video where a professor makes his best effort to break down non-Euclidean geometry for non-mathematicians.
@Wexexx9 жыл бұрын
migfed Not much to say. Spheric and Euclidean geometry have been studied for many many hundreds of years. The hyperbolic space was not studied for equally long because many considered it to be "bad". Therefore the study of hyperbolic space started at 1800-1900's. It started with Bolyai and Lobachevsky(which is also why hyperbolic geometry sometimes is referred to as "Bolyai-Lobachevskian geometry") which stated a successful new parallell postulate. Is hyperbolic space hard to study? Well, yes. For me it was just a bunch of formulas thrown in my face and we had to happily accept it and learn it. I found the hyperbolic geometry the most boring simply because it is so intense in formulas. Everything you want to do needs a frickin' formula.
@bwayagnesarchives6 жыл бұрын
@numberphile pleaseee
@gideonbuckwalter41289 жыл бұрын
Brady, you should get in touch with the people who crochet hyperbolic plane representations. Great video as usual!
@devmehta53139 жыл бұрын
I never liked golf anyway
@27122712ful9 жыл бұрын
Dev Mehta Golf sucks
@PraetorianCuber9 жыл бұрын
economíamatemática screw you it's a fun sport, and a good bonding experience since I play it with friends and family
@singleturbosupra79519 жыл бұрын
PraetorianCuber But rallycross is cheaper and more fun.
@fryncyaryorvjink21409 жыл бұрын
get out of here Jezza, this is BBC property!
@TheDiggster139 жыл бұрын
My heads hurts! What is the best way of actually visualising a hyperbolic plane in my head?
@IsuAsenjo9 жыл бұрын
TheDiggster13 Like a hamster wheel.
@jamez63989 жыл бұрын
TheDiggster13 The inside of a hollow sphere.
@TheDiggster139 жыл бұрын
Thanks guys! Makes more sense now :)
@NathanRichan9 жыл бұрын
livarot1 So it's like a trumpet? With the origin infinitely far from the part where the sound comes out?
@ShadowTheAge9 жыл бұрын
James Oldfield That's not true, google "Pseudosphere"
@Xeroskia9 жыл бұрын
I've concluded that hyperbolic....anything... is really fucking weird.
@TheHuesSciTech9 жыл бұрын
***** Just think that if you stand at the north pole (or anywhere), and you walk in one direction, and your friend walks in exactly the opposite direction... starvation and drowning aside, you would meet right back up at the south pole (or the antipodes of wherever you started). That's because Earth is a sphere(-ish) / it has positive curvature; hyperbolic space is just the opposite where you have negative curvature.
@fryncyaryorvjink21409 жыл бұрын
So wouldn't you just be on the inside of a sphere, and why is a straight line infinitely long?
@TheHuesSciTech9 жыл бұрын
Nabre Labre No, if you're inside a sphere, you'll still find that the angles of a triangle add up to more than 180 degrees. Being on the inside is the same as being on the outside; you're still constrained to the *surface* of the sphere regardless. Why is a straight line infinitely long in hyperbolic space? Because it has no particular boundary to stop it. The fact that lines on a sphere run right back to their own starting point is the special case here.
@debendragurung30338 жыл бұрын
+TheHue's SciTech so is hyperbolic space a way of viewing the cartesian coordinates vanishing into the horizon.
@SKyrim1908 жыл бұрын
"Imagine you are a golf player here...with a golf club coming out of your freaking chest!"
@SteamDonkey9 жыл бұрын
This is one of the most interesting videos on numberphile!
@zidus679 жыл бұрын
I have no idea what he's talking about but I love putting on videos like these when someone is in my room and nod my head pretending that I'm understanding it perfectly, makes me look really smart.
@sbjf9 жыл бұрын
Yay! More from this guy please, this is much more interesting than the usual "weird number series" videos.
@noahnaugler7611 Жыл бұрын
Very interesting, but I have one issue. The professor uses formulae that equate the curvature constant to the unit of measurement, which causes the plane to be significantly more curved for smaller units of measurement. The best way to think of this is to compare it to Spherical geometry. If the curvature constant is equal to 1ft, then the plane would be very small. But if it were far smaller than 1ft, on the order of 10^-80 when compared to 1ft, then to a human it would be effectively indistinguishable from Euclidean geometry, like living on a ball so big that you can't see the curvature. So for hyperbolic geometry, while the professors calculations are correct, they are showing the reality of an extremely curved plane. In the game hyperrogue, the curvature is determined by the tiling used. For simple tilings, like the default truncated {7,3} (I think that's the correct terminology), the curvature is very slight, allowing for a gameplay experience that doesn't immediately break your brain. However, of you modify the tiling, say to {8,8} or something like that, the curvature is far larger, becoming far more difficult to project and comprehend. (The engine is also capable of things like {3,∞}, which has some interesting gameplay consequences). Essentially, I'm just a little miffed that the professor neglected to mention the degree of curvature he was working with. I'd left comments years ago to try and articulate this, but I hadn't the knowledge or words to do so.
@dannnyweeeks9 жыл бұрын
Incomprehensible for me as most of these videos but something keeps me coming back for more!
@imranshishir19473 жыл бұрын
One of my favourite videos to this day.
@JoeGelman9 жыл бұрын
Hyperbolic Geometry is like the absolute coolest thing in the frickin' universe!!!
@NoNameAtAll22 жыл бұрын
now that one can experience this in game "hyperbolica", it is useful
@SapphireCrook9 жыл бұрын
Man, hyperspace always got me wiggling. I keep forgetting that you just have to imagine it as 'stretched' space to the end and 'compressed' space to the centre. The reason lines curve inward is because there every 1 length becomes 'worth more' length further outward. Space being worth more space depending on it's place in space. Neat.
@mrukon99 жыл бұрын
This video was one of your best in a while(at least in my opinion). I haven't looked into hyperbolic geometry before so this was really cool.
@robbiekavanagh28024 жыл бұрын
There's a youtuber called CodeParade who's releasing a game on Steam that takes place in hyperbolic space. He's got a great KZbin channel as well.
@ballom294 жыл бұрын
And he mentionned hyperrogue in his latest video. And I can confirm everything said in that numberphile video, the slightlest deviation quickly lead to an enormous change of path....one goal of the game is to find an orb of yendor, first you find an orb, and it'll create 100 tiles away a corresponding key. You got that key? Great , now go back to the orb.....wait from where I came from?
@jayquelin7 жыл бұрын
you're absolutely fantastic brady thank you dearly for making these videos
@fidrewe997 жыл бұрын
You forgot to mention, the unit the calculations are done refers to the curveture of the hyperbolic plane. Depending on the curveture you choose, the numbers you get become more Euclidian or more hyperbolic.
@sergiogarza25199 жыл бұрын
Someone should make video game where you play pool, billiards, in hyperbolic geometry. People are going to play it regardless of how difficult it is, like solving a 4-D rubik's cube games
@Tlion21029 жыл бұрын
I'm not sure it's techically playable in the first place though
@SpySappingMyKeyboard9 жыл бұрын
Sergio Garza You should check out hyperrouge. A rougelike game in hyperbolic geometry.
@sergiogarza25199 жыл бұрын
SpySappingMyKeyboard That's awesome! Thank you, I'm definitely gonna play this game!
@coopergates96809 жыл бұрын
Sergio Garza Try making an FPS in H^3 and let me know how you set gravity up....
@sergiogarza25199 жыл бұрын
Cooper Gates That would depend on what kind of surface you want to be on top of and how that would be shaped. If gravity is the result of the bending of spacetime, then we would have to discuss both what kind of surface we're standing on and how intense the global hyperbolic geometry.
@kennethflorek85328 жыл бұрын
I did not get a visceral understanding. If some one did a FPS game where you were in hyperbolic space, maybe that would be visceral. But there would be the bigger problem of how physics would work, or if it would work. Would the rule for the combination of force vectors make any sense, because it depends on the Pythagorean theorem, which depends on space being Euclidean. Would gravity behave anything at all like what we have in Euclidean space, because it depends on the way forces combine? Would light reflect the same way in hyperbolic space?
@mpalin119 жыл бұрын
Thank you, Numberphile, once again for another eye-opening video!
@informationparadox3874 жыл бұрын
Im sorry but I laughed so hard when i checked out his name in description!😂👌
@blackkittyfreak9 жыл бұрын
I cannot even. I have lost my ability to can.
@DigGil39 жыл бұрын
blackkittyfreak Use a flask or a jar instead.
@deuteriumtritium97004 жыл бұрын
But can you odd?
@Yaxqb4 жыл бұрын
7:56 "this path isn't open to me" Hyperbolic dude: yea but it's 10^100 Nice
@roros25129 жыл бұрын
In the last part, the golf stuff, I think if we could see the ball at the hyper space, before hitting it, we'll see a straigth path between the ball and the hole, this is because the light travel at the shortest path, well i guess. great video, thanks brady, I like very much this channel
@alexanderreynolds97059 жыл бұрын
Loved this vid! A little heaviness now and then is great. Thanks Brady.
@KevinWeatherwalks9 жыл бұрын
I can't wait to play Riemann-Surface Tennis...
@lmaka19 жыл бұрын
On a side note, it is refreshing to see a mathematician on this channel who isn't a natural artist with perfect penmanship.
@nifflan9 жыл бұрын
Dick Canary is amazing. I laughed so hard at this video, best of Numberphile!
@danzigvssartre6 жыл бұрын
I now believe that cats exist in hyperbolic space.
@arthur9808079 жыл бұрын
Well, isn't that a very curved version of hyperbolic space, with the unit distance being one foot? Surely a hyperbolic universe with a unit distance of, say, a kilometer or a mile would be more tame.
@SquirrelASMR2 жыл бұрын
There is a cool video that helps you intuitively visualize why the shortest path in hyperbolic space are those 90 degree intersecting circles. It's called *"iluminating hyperbolic geometry"* and a guy projects shadows of wireframe type objects to show it, and u see around the edges of the circle, the space has very dense lines in the shadow, vs less near the center, so u kinda wanna walk away from the dense edge part first, while keep moving closer to your new location, then return to the dense part bc the destination is there and ur forced to. But if u took the straight line path, it mostly travels through the dense area covering more space.
@Green_Bean_Machine8 ай бұрын
7:49 a great thing to mention is that "your euclidian eyes" would see the light also travel the shortest path, you would see it being 590ish feet away, not a misleading 5 or so, but a daunting 590.
@christopher25739 жыл бұрын
My head really, really hurts. (Math is awesome!)
@ui0ekim528 жыл бұрын
2:44 "hyperbolic sin times R"??
@francescorende99878 жыл бұрын
do a video on every millenium prize problem
@ignazszlacheta53929 жыл бұрын
Very interesting :D Far more interesting then the stuff we do in 8th grade right now . ( Germany)
@JcGross939 жыл бұрын
So this is why we don't learn about this in school...
@alexshelley65379 жыл бұрын
I've learnt about in further maths for my A-Levels! It's more simple than this though haha
@botar999 жыл бұрын
***** I learned about this 2 weeks ago, but I'm in university so that is probably why.
@Astro_Spud9 жыл бұрын
Alex Shelley I was confused for a second. In Australia (in Victoria, to be precise) further maths is actually the easiest maths in year 12.
@alexshelley65379 жыл бұрын
***** in England, further maths is the hardest maths you can do
@alexshelley65379 жыл бұрын
Before a degree that is
@joelsmall8565 Жыл бұрын
Hey if you guys want to do more maths like this yourselves and find the areas of hyperbolic circles that are bigger than a standard calculator can handle.... Y=log(pi*e^X) is very close to Y=13/30*X + 0.4975 Since my calculator can't handle powers above 10^99 But with this approximation I can say you would need around 6*10^126 outfielders for baseball ⚾
@jasminelatendresse60469 жыл бұрын
Never really studied hyperbolic spaces in a serious way so that was a bit of a punch in the face for me. Very interesting though relating it to real life situations. Thanks!
@Creaform0039 жыл бұрын
If anyone is as confused as I, after reading a tone of comments and googling some stuff the way I came to understand it is if you have a binary tree, IE. 6 3,9 1,2,4,5,7,8,10,11 Where each level grows exponentially. The fastest way to transverse from 1 - 11 is not to go along the bottom, 1-2-4-5-6-8-10-11 but to step up and back down the tree, 1-3-6-9-11. And the tree is wrapped into a circle, where higher tiers are toward the centre, and the lowest tier is the circumference. The numbers are arbitrary.
@lin4cba9 жыл бұрын
That's the most badass golfer I have ever seen in my life!
@pitrol1419 жыл бұрын
It's not exactly like that, because if you stand in point A and look right in to point B the light will go in the fastest possible way, so that will be our "curve" direction. It means that nothing unexpected won't happen - the shortest way to point B is in direction of point B.
@PrenticeNeto9 жыл бұрын
What I get from this video is basically "The further away you are from the center, the bigger the distances become." That's why the shortest distance between two points is curved towards the center, because this way you are passing through areas where distances are shorter.
@TentoesMe8 жыл бұрын
Next topic, golf in hypergolic space with Professor Poliakoff :D (I have a vague memory of something called hyperbolic space from some math class decades ago.)
@razi_man3 жыл бұрын
I think a thing that people keep forgeting about hyperbolic space is that any movement through space would create a streching tidal force on an object, an object moving fast enough trough space would rip apart whereas in eucledian geometry, the object would just keep moving through space with no issues.
@vocnys9 жыл бұрын
I stopped understanding at 0:10
@MrRyanroberson17 жыл бұрын
I found this program called "magic tile" which has some hyperbolic puzzles, this helps people understand why these crazy distances happen.
@quarkmarino9 жыл бұрын
That Stick figure pasted in the right side of the euclidean golf, killed me, ROFL.
@LupeSunglass7 жыл бұрын
This dude must really love numbers. "Numberphile"
@scowell9 жыл бұрын
There's an old video called 'Not Knot'... it explains hyperbolic space in a very interesting way... turns out, if you remove three intersecting rings from 3D-land you get hyperbolic space... it's all about the Borromean Rings. It also has primitive CGI, so doubly cool. I think part 1 is on YT... sure would like to see part 2 again.
@dancronin1439 жыл бұрын
I like the sound of this one nice title mate
@jmorrow229 жыл бұрын
This could make baseball watchable. Not any easier to understand, but watchable.
@panchoeliott9 жыл бұрын
This would give a completely different result if he worked in metric :) which needs the question: what if we defined the unit length as the longest length a available to us in each model, then it would be infinitely shorter distance calculated (I think)
@asanx58599 жыл бұрын
Wouldn't the baseball players bend together with the space so they would cover the field just like they did on euclidean space?
@sjwimmel9 жыл бұрын
It's so weird to me that the boundary of that hyperbolic space is right there, and yet you have to think about it as being infinitely far away. It's RIGHT THERE!
@dailylife1009 жыл бұрын
Learning this kind of stuff in my astro course at uni. It's so hard to get my head around, conceptually, as to what is actually happening in hyperbolic space.
@myersa809 жыл бұрын
***** I imagine it's a lot easier to imagine with 3d modeling, looking at it on a 2-D surface really can't do it justice.
@388_md.mursalinsarkarnayee45 жыл бұрын
Very very thanks ... tomorrow my biology xm💤
@tehyonglip92039 жыл бұрын
Please make more of these videos
@alexandreandrianov59709 жыл бұрын
I think it is very logical. The only thing I did not understand is why the heck the ball is supposed to travel as a straight line in this curved space? I think it should perfectly follow the shape of the space which for the inside observer will not be distinguishable from the straight line since the light will also travel at curves.
@blackbombchu9 жыл бұрын
There actually is a way to win hyperbolic golf and that's to keep taking shots of such a small distance that the ball is more likely to get closer to the hole than further away aiming for the hole in each of those shots. The more skilled you are at controlling the direction you shoot the ball, the further you should shoot it in each shot.
@naimulhaq96269 жыл бұрын
Interesting and well explained !!!
@filipengstrom7909 жыл бұрын
I like watching these even though I don't understand
@flexico64 Жыл бұрын
Doesn't a hyperbolic space have a curvature term? As in, the surface of a sphere can have different curvatures related to the diameter, so wouldn't there be a similar variable for a hyperbolic surface?
@hiccupwarrior89Ай бұрын
there is but I think they assume the curvature is 1 unit big
@AlphaSquadZero6 жыл бұрын
For the baseball equation(assuming it took place on a non-euclidean sphere with the radius of earth): (pi/2(cosh(.09144km/6371km) - cosh(.03048km/6371km)))*6371000m = 0.000915225 m^2 Conversely, it will be the in-field that will need more players (it is over 10km^2). For the game of golf (under the same assumptions as before): pi/180*sinh(.09144km/6371km) * 6371000m = 1.59593m Which is exactly the same distance in non-euclidean space. You only really see a lot of deviation in the arc length once you travel around the entire world nearly half a time.
@DigGil39 жыл бұрын
I think you should mention that these paths make sense when you take into account that it's how it works also for paths on the surface of spheres or saddle-shape planes. When you draw "straight" lines on the Unit Disc it's as if you did the same on the a flat map of the world. For example: go to google maps and make a straight line between London and Miami. But because the World is actually rounded, this line is actually a longer distance IRL than if you made a curved path approaching Greenland and curving back to Miami. The actual short paths on a sphere are called arcs of Great Circle. They are found by having an euclidian plane intersecting both London, Miami and the center of the sphere. This way you get the only largest circle that connects these points, thus the name. This abstract maths surrounding hyperbolic space is still very useful because there are more situation in the Universe where we need to calculate weirdly shaped curved surfaces than just spheres. The best example is the geometry of Space-Time which is a 4-dimentional entity which surface we stand on, thus all the unusual paths we perceive when travelling at great speed or distance (or within great gravity fields).
@manuelnovella399 жыл бұрын
Please make more videos about hyperbolic and spherical geometry!
@sk8rdman9 жыл бұрын
For those of you better versed in hyperbolic geometry, I have a few questions. 1. If being even 1 degree off puts my ball further (almost twice as far) from the hole than where it started, then how accurate do I have to be for my ball to end up closer than before I hit it from 300ft away? 2. How does this change if the target is closer? If I only need to putt the ball 6ft, how accurate do I have to be to put the ball closer to the hole than before I hit it? 3. It seems to me that the best strategy in hyperbolic golf is to only hit the ball a short distance that will scale with my accuracy, to put the ball closer to the hole than before I hit it. If my accuracy is within 6 degrees, how far can I hit it from 300ft to ensure it ends up closer? 4. What if my accuracy is within 3 degrees? 5. How does this change as I get closer? Once I get it half way to the hole, 150ft, can I aim further, even if my accuracy is the same?
@uuu123439 жыл бұрын
Hi Numberphile,can you do a episode on the caesar cipher? great episode once again btw
@MrWalnut49 жыл бұрын
No wonder the hyperbolic time chamber was so big...
@sergeifomin99014 жыл бұрын
Keep in mind that professor here assumes that the hyperbolic unit of length is equal to 1 ft. If you put say hyperbolic unit = 100 ft, your local geometry will be way closer to Eucledian (less curvature). Btw it is an open question if we actually live in hyperbolic space, just the curvature is so negligible that we can't notice it.
@TinyFoxTom8 жыл бұрын
I can't wait for them to explain how hyperbolic space relates to compounded interest.
@danialbrown44174 жыл бұрын
This was badass
@MykhailoIvancha8 ай бұрын
If we consider that the border of the circle is actually an infinitely far away horizon, I think the distance to the hole itself (that you placed near the border) is already pretty huge so it’s okay to miss a lot
@thebigtortuga9 жыл бұрын
two great ways to imagine hyperbolic space visually: 1. youtube the game "hyper rogue" and look at the gameplay 2. look at a video of the home screen on the Apple watch. very similar
@Dalton12949 жыл бұрын
The area of a circle can also be found by using the formula A=C squared/(4pi)
@10mimu9 жыл бұрын
Yes! Finally!
@kiljoy123456789 жыл бұрын
I think I died when they put his abstract golfer in at 5:14
@КириллТрифонов-е5ф3 жыл бұрын
Imagine hitting the ball in golf *almost* to the hole and now there’s superclusters of galaxies between your ball and hole...
@igorjosue89573 жыл бұрын
but a "curve" of the ball can make it go into the hole like a normal golf
@sandyflowers17255 жыл бұрын
This makes me think of the math that would be used to plot the flight path between objects through accelerating space, like for super long space voyages. In our space that is expanding, you'll never reach the end, so that matches. Also, going from one single point to another far point, across very vast differences or vast speeds, you would have to make adjustments for the acceleration of the universe. Your destination would have moved and your 'draw' to the destination would follow a curve - not a straight line - as you came into alignment with its directional acceleration.
@bellsTheorem11389 жыл бұрын
This gives the phrase "Well, that escalated quickly" some serious perspective.
@TheGreatRakatan7 жыл бұрын
I clicked because it sounded like this might explain the ending of that space movie, where there is baseball at the end and weird floating cities and stuff.
@altamistristan4 жыл бұрын
Now, imagine living in a hyperbolic universe
@jennycotan70802 жыл бұрын
It may be interestingly difficult to remember your way to school/work,in a park your friend who is running away from you will disappear quickly on the "horizon",and you may be always thinking that you're living on a strange little planet until you get used to this strange world.
@ilivgur5 жыл бұрын
My life truly started when I discovered non-Euclidean geometry ❤
@СветланаКузьменко-з4и3 ай бұрын
This space is huge!
@CaesarsSalad9 жыл бұрын
Shouldn't all these numbers depend on the size of the hyperbolic "disc" it's played on? In my imagination, the area around the center is very euclidean-like and it becomes weirder towards the edge. But that may be wrong.
@MatthiasUrlichs11 ай бұрын
You're talking about the curvature of the hyperbolic space. Right. This whole video assumes a space with bretty extreme curvature.
@deadlypendroppingby9 жыл бұрын
There should be a video game with a hyperbolic engine =)