(3x+7x)(11x+9x) - 3x*11x = 200x² - 33x² = 167x² = 25 x² = 25/167 area of the Green triangle : 33x² = 825/167(cm²)
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@連-x5hКүн бұрын
Here is another solution that does not require trigonometric functions. This use the "area ratio is equal to the base ratio". You can make an auxiliary line from E to B. Then Set triangle EAB to a. a + (3a/7 * 9/20) = 25 a = 3500/167 triangle CEF =3a/7 * 11/20 = 825/167
@maroonshaded15 сағат бұрын
That's similar to my solution, I also used ratios, but with a little different steps.
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@sorourhashemi3249Күн бұрын
Thanks so challenging
@PreMath13 сағат бұрын
Glad to hear that! You are very welcome! Thanks for the feedback ❤️
@santiagoarosam430Күн бұрын
Si AEF=a---> ECF=3a/7 . Si BFA=b---> FCA=11b/9 ---> a+b=25---> b=25-a ---> a+(3a/7)=11b/9=11(25-a)/9 ---> a=1925/167 ---> Área verde EFC =(3/7)(1925/167) =825/167 cm². Gracias y saludos
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@Ibrahimfamilyvlog2097lКүн бұрын
Thanks so much sir
@PreMathКүн бұрын
You are very welcome! Thanks ❤️
@sorourhashemi3249Күн бұрын
Area of ∆CEF=16.5x^2 and area of ∆ABC= 100x^2,so 16.5 x^2+25=100x^2, ===>x=0.547 and area of green is 3(0.547)×11(0.547)/2= 4.94
@PreMath13 сағат бұрын
That's a great approach, I like how you broke it down step by step! Thanks for sharing ❤️
@MrPaulc222Күн бұрын
I'm not totally certain of my method here, but will give it a go: 10x * 20x = 25 + G (for Green area). 3x * 11x = G 200x^2 - 33x^2 = 167x^2 167x^2 = 25 G = 25*(33/167), so about 5. Comes out at 4.94 cm^2 I suspect the angle at C isn't 90, but it may not matter as it's about proportions. Well, it looks about right, visually, but I'll look at the video now. Wow! I can't believe I got that right, and I did it more simply, too. Wonders never cease.
@PreMath13 сағат бұрын
Excellent! Keep rocking👍 Thanks for sharing ❤️
@PrithwirajSen-nj6qqКүн бұрын
If ABF =9x, AFC=11x CEF=11x*3/10=33x/10 AEF =11x *7/10=77x/10 Then 9x +77x/10=25 >167x =250 >x =250/167 Area of 🔺 CEF =33x/10 =33*250/10*167= 33*25/167=825/167 sq units
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@johnbrennan3372Күн бұрын
Can also be done by joining A to F and working out the ratios of two pairs of triangles having the same heights . Let area of triangle AFB= t, so area of triangleAFE = 25-t and let area of green triangle =g etc.
@PreMath13 сағат бұрын
Thanks for the feedback ❤️
@marcgriselhubert3915Күн бұрын
Area of green triangle CEF = (area of big triangle ABC).((3.x)/(10.x)).((11.x)/(20.x)) = (33/200).(area of big triangle ABC) So, by difference, area of AEFB = (167/200).(area of big triangle ABC) = 25. That gives: area of big triangle ABC = 25.(200/167), and finally: area of green triangle CEF = 25.(200/167).(33/200) = 25.(33/167) = 825/167. (Very easy.)
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@wasimahmad-t6cКүн бұрын
16.5÷ 3.34=4.94
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@imetroangola17Күн бұрын
*Outra forma de ver a questão:* [ABC] - [CFE] = [AEFB] sen θ × (200x² - 33x²)/2 = 25 167(sen θ × x² )/2 = 25 *(sen θ × x² )/2* = 25/167 [CFE] = 33(sen θ × x² )/2 [CFE] = 33 × 25/167 *[CFE] = 825/167 cm²*
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@phungpham1725Күн бұрын
1/ Label G and A as the areas of the green and ABC triangles respectively. We have: G = 33/2 . sq x . sin. (C) A = 100 . sqx. sin (C) --> G/A=33/200 --> G/33=A/200= (A-G)/(200-33) =25/167 -> G = 33. 25/167= 4.94 sq cm😅😅😅
@PreMath13 сағат бұрын
Excellent! Thanks for sharing ❤️
@misterenter-iz7rzКүн бұрын
Not difficult but need plenty of computation. 😢
@PreMath13 сағат бұрын
Sure! Thanks for the feedback ❤️
@TimothyCizadloКүн бұрын
It seems to me that once you define the area of ABC as (1/2)*(AC)*(BC)*(sinθ) you end up with 25 = 100x²(sinθ) or 1/4 = x²(sinθ). You can then substitute this x²(sinθ) value into the law of sines for EFC which is 1/2*(3x)*(11x)*(sinθ), which simplifies to (33/2)*x²(sinθ) or 33/8, which is a different answer than presented. I think that the quadrilateral AEFB does not need to be found, and causes some extra errors. Would someone please confirm? Edit: I see where my error was. I took the area of the large triangle to be 25 not the area of the quadrilateral to be 25.
@PreMath13 сағат бұрын
Thanks for the feedback ❤️
@cabasantbabКүн бұрын
16.5 sqx
@wackojacko3962Күн бұрын
Too really sharpen your math skills, ignore the caution that the presented diagram is not drawn to scale. Fire away and solve. Then circle back and do it the right way. Too learn maths you gotta do maths! 😊
@PreMath13 сағат бұрын
That's a great point! 😀 Thanks for the feedback ❤️
@unknownidentity2846Күн бұрын
Let's find the area: . .. ... .... ..... The areas of the triangles ABC and CEF can be calculated as follows: A(CEF) = (1/2)*CE*CF*sin(∠ECF) = (1/2)*(3x)*(11x)*sin(∠ECF) = (33x²/2)*sin(∠ECF) A(ABC) = (1/2)*AC*BC*sin(∠ACB) = (1/2)*AC*BC*sin(∠ECF) = (1/2)*(AE+CE)*(BF+CF)*sin(∠ECF) = (1/2)*(7x+3x)*(9x+11x)*sin(∠ECF) = (1/2)*(10x)*(20x)*sin(∠ECF) = (200x²/2)*sin(∠ECF) Now we are able to obtain the area of the green triangle CEF: A(ABFE) = A(ABC) − A(CEF) 25cm² = (200x²/2)*sin(∠ECF) − (33x²/2)*sin(∠ECF) 25cm² = (167x²/2)*sin(∠ECF) ⇒ A(CEF) = (33x²/2)*sin(∠ECF) = (33/167)*(167x²/2)*sin(∠ECF) = (33/167)*(25cm²) = (825/167)cm² ≈ 4.940cm² Best regards from Germany