Math Olympiad | Can you find the length AB? | (Justify your answer) |

  Рет қаралды 12,866

PreMath

PreMath

Күн бұрын

Пікірлер: 41
@Vakyanshpro
@Vakyanshpro 8 ай бұрын
You explains very nicely
@PreMath
@PreMath 8 ай бұрын
Thanks a lot 😊🌹
@harrymatabal8448
@harrymatabal8448 7 ай бұрын
Excellent. Your videos make you think ❤
@josefpichler7271
@josefpichler7271 4 ай бұрын
Nice, with your help I get back a lot of knowledge learned long times ago ...
@jamestalbott4499
@jamestalbott4499 8 ай бұрын
Thank you!
@alster724
@alster724 8 ай бұрын
Impressive!
@wackojacko3962
@wackojacko3962 8 ай бұрын
@ 1:47 there is a phenomenon of the cathode ray tube of old televisions is known as "blacker than black" . I never thought of what appears to be the illusion of "whiter than white" of the color change. And of course a shout out to using the Intersecting Chord Theorem. 🙂
@PreMath
@PreMath 8 ай бұрын
😀 Thanks for the feedback ❤️
@Shell1950
@Shell1950 8 ай бұрын
I solved it days before my 75th birthday. Never stop learning.
@Mediterranean81
@Mediterranean81 8 ай бұрын
AP=a ; EQ=b intersecting chords theorem b(a+7)=5(12) a+7=60/b a=-7+ 60/b (#) a=(-7b+60)/b intersecting chords theorem again 6*10=a(b+7) 60=(60-7b)(b+7)/b 60b=60b+420-7b^2-49b 0=-7b^2-49b+420 0=b^2+7b-60 you can use quadratic formula but i'm factoring 0=b^2+12b-5b-60 0=b(b+12)-5(b+12) 0=(b-5)(b+12) b-5=0 or b+12=0 b=5 or b=-12 b>0 so b=5 from equation (#) a=-7+(60/b) a=-7+(60÷5) a=-7+12 a=5 a=5 ; b=5 so AE=a+b+7=5+5+7=17
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@yalchingedikgedik8007
@yalchingedikgedik8007 8 ай бұрын
Thanks Sir Very well and enjoyable With my respects ❤❤❤
@quigonkenny
@quigonkenny 8 ай бұрын
Bu intersecting chords theorem, for any two intersecting chords in a circle, the products of the lengths either side of the point of intersection is the same. In this case, CP•PD = AP•PB and EQ•QF = AQ•QB. Let AP = x and QB = y. CP•PD = AP•PB 6(10) = x(7+y) 60 = 7x + xy xy = 60 - 7x y = (60-7x)/x EQ•QF = AQ•QB 5(12) = (x+7)y 60 = (x+7)y 60 = (x+7)(60-7x)/x 60x = 60x + 420 - 7x² - 49x 7x² + 49x - 420 = 0 x² + 7x - 60 = 0 (x+12)(x-5) = 0 x = 12 ❌ | x = 5 y = (60-7(5))/(5) y = 25/5 = 5 AB = x + 7 + y = 5 + 7 + 5 = 17
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@batavuskoga
@batavuskoga 8 ай бұрын
Using the chords theorem, it's easy to find the solution
@PreMath
@PreMath 8 ай бұрын
Thanks for the feedback ❤️
@zdrastvutye
@zdrastvutye 8 ай бұрын
this revealed to need 2 nested calculations, but in the end i have the same result, despite i did not apply any theorem, only by calculating distances: 10 print "premath-can you find the length ab":dim x(9),y(9):@zoom%=1.4*@zoom% 20 l1=6:l2=10:l3=7:l4=5:l5=12:sl=l1+l2+l3+l4+l5:sw=l1^2/sl:r=sw:goto 170 30 xm=-sqr(abs(r*r-(ye-ym)^2)):goto 140 40 yp=-sqr(l3^2-xp^2):goto 80 50 dyc=2*yc*(ym-yp):zx=r*r-l1^2-xm^2-ym^2+xp^2+yp^2+dyc:if xp=xm then stop 60 xc=zx/2/(xp-xm):dgu1=(xc-xp)^2/sl^2:dgu2=(yc-yp)^2/sl^2 70 dgu3=l1^2/sl^2:dg=dgu1+dgu2-dgu3:return 80 yc=-sl:gosub 50 90 dg1=dg:yc1=yc:yc=yc+sw:yc2=yc:if yc>sl then return 100 gosub 50:if dg1*dg>0 then 90 110 yc=(yc1+yc2)/2:gosub 50:if dg1*dg>0 then yc1=yc else yc2=yc 120 if abs(dg)>1E-10 then 110 else return 130 goto 140 gosub 40:dxd=(xp-xc)*(l1+l2)/l1:xd=dxd+xc:dyd=(yp-yc)*(l1+l2)/l1 150 yd=dyd+yc:dfu1=(xd-xm)^2/sl^2:dfu2=(yd-ym)^2/sl^2:dfu3=r*r/sl^2 160 df=dfu1+dfu2-dfu3:return 170 ym=(l4-l5)/2:ye=l4:xp=-l3: gosub 30 180 df1=df:xp1=xp:xp=xp+sw:if xp>l3 then else 200 190 r=r+sw:goto 170 200 xp2=xp:gosub 30:if df1*df>0 then 180 210 xp=(xp1+xp2)/2:gosub 30:if df1*df>0 then xp1=xp else xp2=xp 220 if abs(df)>1E-10 then 210:rem die schnittpunkte berechnen 230 xq=0:yq=0:dx=xp-xq:dy=yp-yq:x1=xq:y1=yq:dl=l3 240 kxx1=(dx/dl)^2:kxx2=(dy/dl)^2:kxx=kxx1+kxx2:kx1=(x1-xm)*dx/dl:kx2=(y1-ym)*dy/dl 250 kn=(x1-xm)^2+(y1-ym)^2-r*r:kx=kx1+kx2:kx=kx/kxx:kn=kn/kxx 260 dis=kx^2-kn:if dis
@PrithwirajSen-nj6qq
@PrithwirajSen-nj6qq 8 ай бұрын
Intercepting chords theorem and arithmetic ------_--------- Sum of the segments of AB is fixed as AB is fixed. The larger segment is greater than 7 according to the figure. The product of segments is 60. ++ Hence we have to break 60 into two parts so that the product is 60.And the difference between larger and smaller will be7 Hence 60=10*6(case 1) =12*5 ( case2) = 15*4 (.case 3) Case 1 If larger segment is 10 ,then the smaller segment will be (10-7)=3 10*3 is not equal to 60 Hence this break up may not be accepted. Case 3 if the larger segment is 15, then the smaller section will 15-7=8 Product of 15*8 exceeds 60 Hence this break up may not be accepted. Case 2 If the larger segment is 12 and the smaller will be 12-7=5. The product of 12 and 5 is 60 This break up must be accepted . Comment please. Length of AB = 12+5=17
@gelbkehlchen
@gelbkehlchen 2 ай бұрын
Solution: According to the tendon theorem: (1) AP*(7+QB) = 6*10 ⟹ (2) (AP+7)*QB = 5*12 ⟹ (1a) 7*AP+AP*QB = 60 ⟹ (2a) AP*QB+7*QB = 60 ⟹ (1a)-(2a) = (3) 7*AP-7*QB = 0 ⟹ (3a) AP = QB in (1a) ⟹ (1b) AP²+7*AP = 60 |-60 ⟹ (1c) AP²+7*AP-60 = 0 |p-q formula ⟹ (1d) AP1/2 = -3.5±√(3.5²+60) = -3.5±8.5 ⟹ (1e) AP1 = -3.5+8.5 = 5 and (1f) AP2 = -3.5-8.5 = -12 [invalid in geometry] ⟹ AB = 2*AP+7 = 2*5+7 = 17
@Tmwyl
@Tmwyl 5 ай бұрын
I got this one!
@marcgriselhubert3915
@marcgriselhubert3915 8 ай бұрын
I dd it just like you. Another possible method?? (I am always surprised by the way you solve second degree equations)
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for the feedback ❤️
@sorourhashemi3249
@sorourhashemi3249 3 ай бұрын
Thanks. AP=a and QB=b, (7+a)b=60== >b=60/7+a, and (7+b)a=60, ===>a=60/7b, so (7+60/7+b)b=60===>7b^2+49b-420==> b=5 and a=5 as well and AB=17.
@AmirgabYT2185
@AmirgabYT2185 8 ай бұрын
AB=17
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@santiagoarosam430
@santiagoarosam430 8 ай бұрын
Potencia de Q =5*12=60=(7+a)b Potencia de P =6*10=60=(7+b)a 7b+ab=7a+ab ; a=b ; 60=7a+a^2 ; a=5. AB=7+2a=17. Gracias y saludos.
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@phungpham1725
@phungpham1725 8 ай бұрын
La bel the two unknown red line segment as x and y. By using chord theorem, we can find x= y So, x(7+x) =60--> sqx +7x-60=0 --> x= (-7+17)/2 =5 ( negative result rejected) AB= 17😅
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@kalavenkataraman4445
@kalavenkataraman4445 8 ай бұрын
AB = 17 units
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@himadrikhanra7463
@himadrikhanra7463 8 ай бұрын
Ab= x 60= x × ( x - 7) 60 = x ×( x - 7) AB =12 ?
@prossvay8744
@prossvay8744 8 ай бұрын
Let AP=x ; BQ=y x(y+7)=(6)(10) xy+7x=60 (1) y(x+7)=(5)(12) xy+7y=60 (2) (1) and (2) xy+7x=xy+7y 7x=7y So x=y (1): x^2+7x-60=0 so x=5 ;y=5 so AB=5+7+5=17units.❤❤❤.Best regards.
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@LuisdeBritoCamacho
@LuisdeBritoCamacho 8 ай бұрын
Assuming that Length of Line AB = (X + 7 + Y) Linear Units. Making use of the Intersecting Chords Theorem: "The Intersecting Chords Theorem states that when two chords of a circle intersect within the circle, the product of the segments of one chord is equal to the product of the segments of the other chord." 1) Given the System of Two Nonlinear (Curvilinear) Equations with Two Unknows (X ; Y): 2a) (6 * 10) = X * (7 + Y) : 60 = X * (7 + Y) 2b) (5 * 12) = Y * (7 + X) ; 60 = Y * (7 + X) 3) Solutions (Intercepting Point): X = 5 and Y = 5 4) (X + 7 + Y) = 5 + 7 + 5 = 17 lin un 5) ANSWER : Length of Line AB is equal to 17 Linear Units.
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@unknownidentity2846
@unknownidentity2846 8 ай бұрын
Let's find the length of AB: . .. ... .... ..... It seems that we have to apply the intersecting chords theorem: CP*DP = AP*BP EQ*FQ = AQ*BQ 6*10 = AP*BP 5*12 = AQ*BQ 60 = AP*BP 60 = AQ*BQ ⇒ AP*BP = AQ*BQ AP*BP = AQ*BQ AP*(BQ + PQ) = (AP + PQ)*BQ AP*BQ + AP*PQ = AP*BQ + PQ*BQ AP*PQ = PQ*BQ ⇒ AP = BQ 60 = AP*BP = AP*(BQ + PQ) = AP*(AP + PQ) = AP*(AP + 7) = AP² + 7*AP AP² + 7*AP − 60 = 0 AP = −7/2 ± √[(7/2)² + 60] = −7/2 ± √(49/4 + 60) = −7/2 ± √(49/4 + 240/4) = −7/2 ± √(289/4) = −7/2 ± 17/2 Since AP>0, the only useful solution is: AP = −7/2 + 17/2 = 10/2 = 5 AB = AP + PQ + BQ = 2*AP + PQ = 2*5 + 7 = 17 Best regards from Germany
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
@Mediterranean81
@Mediterranean81 8 ай бұрын
AP=a ; EQ=b intersecting chords theorem b(a+7)=5(12) a+7=60/b a=-7+ 60/b (#) a=(-7b+60)/b intersecting chords theorem again 6*10=a(b+7) 60=(60-7b)(b+7)/b 60b=60b+420-7b^2-49b 0=-7b^2-49b+420 0=b^2+7b-60 you can use quadratic formula but i'm factoring 0=b^2+12b-5b-60 0=b(b+12)-5(b+12) 0=(b-5)(b+12) b-5=0 or b+12=0 b=5 or b=-12 b>0 so b=5 from equation (#) a=-7+(60/b) a=-7+(60÷5) a=-7+12 a=5 a=5 ; b=5 so AE=a+b+7=5+5+7=17
@PreMath
@PreMath 8 ай бұрын
Excellent! Thanks for sharing ❤️
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Viral question from China
8:04
MindYourDecisions
Рет қаралды 740 М.
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 389 М.
The SAT Question Everyone Got Wrong
18:25
Veritasium
Рет қаралды 15 МЛН
Math Olympiad | A Nice Rational Equation | 95% Failed to solve!
15:43
The Perfect Road for a Square Wheel and How to Design It
26:45
Morphocular
Рет қаралды 1,3 МЛН
Germany l can you solve this?? l Olympiad Math exponential problem
17:05
ЗАДАЧА ВЗОРВАЛА ИНТЕРНЕТ! НИКТО НЕ РЕШИЛ!
21:16
Геометрия Валерий Казаков
Рет қаралды 431 М.
Enceinte et en Bazard: Les Chroniques du Nettoyage ! 🚽✨
00:21
Two More French
Рет қаралды 42 МЛН