Can you calculate area of the Pink shaded semicircle? | (Olympiad) |

  Рет қаралды 8,702

PreMath

PreMath

Күн бұрын

Learn how to find the area of the Pink shaded semicircle. Important Geometry and Algebra skills are also explained: Pythagorean theorem; Circle area formula; perpendicular bisector theorem; circle theorem. Step-by-step tutorial by PreMath.com.
Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
Step-by-step tutorial by PreMath.com
• Can you calculate area...
Need help with solving this Math Olympiad Question? You're in the right place!
I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
/ premath
Can you calculate area of the Pink shaded semicircle? | (Olympiad) | #math #maths | #geometry
Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
#FindPinkArea #Semicircle #PerpendicularBisectorTheorem #GeometryMath #PythagoreanTheorem
#MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
#PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
#OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
#MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
#blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
#MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
How to solve Olympiad Mathematical Question
How to prepare for Math Olympiad
How to Solve Olympiad Question
How to Solve international math olympiad questions
international math olympiad questions and solutions
international math olympiad questions and answers
olympiad mathematics competition
blackpenredpen
math olympics
olympiad exam
olympiad exam sample papers
math olympiad sample questions
math olympiada
British Math Olympiad
olympics math
olympics mathematics
olympics math activities
olympics math competition
Math Olympiad Training
How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
Po-Shen Loh and Lex Fridman
Number Theory
There is a ridiculously easy way to solve this Olympiad qualifier problem
This U.S. Olympiad Coach Has a Unique Approach to Math
The Map of Mathematics
mathcounts
math at work
Pre Math
Olympiad Mathematics
Two Methods to Solve System of Exponential of Equations
Olympiad Question
Find Area of the Shaded Triangle in a Rectangle
Geometry
Geometry math
Geometry skills
Right triangles
imo
Competitive Exams
Competitive Exam
Calculate the length AB
Pythagorean Theorem
Right triangles
Intersecting Chords Theorem
coolmath
my maths
mathpapa
mymaths
cymath
sumdog
multiplication
ixl math
deltamath
reflex math
math genie
math way
math for fun
Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

Пікірлер: 43
@jamestalbott4499
@jamestalbott4499 6 күн бұрын
Thank you!
@PreMath
@PreMath 6 күн бұрын
You are very welcome! Thanks for the feedback ❤️🙏
@AzouzNacir
@AzouzNacir 6 күн бұрын
Let E and F be the points of intersection of the line PQ with the complete circle. We have PE*PF=PC*PD. Since QE²=QA*QB=1*2=2, then QE=√2. From this we find (√2-r)*(√2+r)=r². Therefore, r=1. From this, the shaded area is equal to π*1²/2=π/2.
@phungpham1725
@phungpham1725 6 күн бұрын
Thank you! I solved it almost the same as you!😅😅😅
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@marioalb9726
@marioalb9726 6 күн бұрын
R= ½(2+1) = 1,5 cm Pytagorean theorem, twice: R² - r² = r² + (R-1)² 2r² = R² - (R-1)² = 1,5² - 0,5² = 2 r² = 1 A = ½πr² = π/2 cm² ( Solved √ )
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@allanflippin2453
@allanflippin2453 6 күн бұрын
Interesting problem and I have to admit I had no clue how to solve it before I watched the video. I decided to try solving this in a general case. I let a=1 and b=2. R = (a+b)/2 and OQ = (b-a)/2. Now setting up the two right triangles sharing dimension x (OP). ((a+b)/2)^2 - r^2 = x^2 and x^2 = ((b-a)/2)^2 + r^2. With x^2 in common, set the two equations equal: ((a+b)/2)^2 - r^2 = ((b-a)/2)^2 + r^2. Multiply everything by 4 to remove the fractions: (a+b)^2 - 4r^2 = (b-a)^2 + 4r^2. Move r to right right side and a, b to the left side: (a+b)^2 - (b-a)^2 = 8r^2. Multiply out the two squared equations and cancel out redundant terms. 4ab = 8r^2. Isolate r^2 = ab/2. The semi-circle area is pi * r^2 or pi * ab/4. With the original numbers this comes out to pi * 2 * 1 / 4 or pi/2.
@soli9mana-soli4953
@soli9mana-soli4953 6 күн бұрын
Once known that radius =3/2 and OQ=1/2, set OP=x 1) tangent secant theorem from O (X+r)*(x-r)=(1/2)² r² - x² +1/4=0 2) intersecting chords th. (3/2+x)*(3/2-x)=r*r r²+x² - 9/4=0 Summing 1)+2) 2r - 8/4=0 r=1 Area=π/2
@geraldgiannotti8364
@geraldgiannotti8364 6 күн бұрын
Very Nice Solution!
@alanthayer8797
@alanthayer8797 6 күн бұрын
As usual THANKS for different unique solutions Daily sir!
@michaelkouzmin281
@michaelkouzmin281 6 күн бұрын
Just one more solution: 1. Let us draw 2 auxiliary lines: vertical (perpendicular to AB) pathing through Q, It will intersect with large circle at point F and let us conect O and F. 2. Let y= PF, r= CP, then QF = r+y; 3. AB = 1+2 =3; R=3/2; 4. OQ = R-1 = 3/2 -1 = 1/2; 5. Let us consider right tringle OQF : R^2 = OQ^2+ QF^2 => (3/2)^2 = (1/2)^2 + (r+y)^2 (1) 6. Let us apply intersecting chords theorem (chords CD & FQ... and down to intersection.): (r+y+r)*y = r^2 => (2ry+y^2) = r^2 (2) 7. We have got a system of equations : {(1)and(2)} let us expand (1): 9/4 = 1/4 + r^2 + (2ry + y^2) (3) Let us put (2) into (3) 8/4 = r^2+r^2; 2r^2 = 8/4 r^2 = 1; 8. A(pink) = pi*r^2/2 = pi*1/2 = pi/2 sq units.
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@santiagoarosam430
@santiagoarosam430 6 күн бұрын
La alineación PQ corta a la circunferencia por arriba en E y por abajo en F ; CP=PD=PQ=r ; OA=OB=OF=(1+2)/2=3/2 ; OQ=(3/2)-1=1/2---> QF=√(3/2)²-(1/2)²=√2 ---> Potencia de P respecto a la circunferencia =r²=(√2 +r)*(√2 -r)---> r=1---> Área del semicírculo rosa =π/2. Gracias y un saludo cordial.
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@marioalb9726
@marioalb9726 6 күн бұрын
Intersecting chords theorem, over point Q: h² = 2*1. ---> h =√2 cm Intersecting chords theorem, over point P: r² = (h+r)(h-r) r² = h² - 2hr - r² = (√2)² - 2√2r - r² 2r² + 2√2r -2 = 0 r² + √2r - 1 = 0 --> r= 1 cm Area of pink semicircle: A = ½πr² = π/2 cm² ( Solved √)
@PreMath
@PreMath 6 күн бұрын
Thanks for the feedback ❤️🙏
@cyruschang1904
@cyruschang1904 6 күн бұрын
(1.5)^2 - r^2 - r^2 = (0.5)^2 r^2 = 1 Pink area = π/2
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@cyruschang1904
@cyruschang1904 6 күн бұрын
@ Thank you 😊
@SkinnerRobot
@SkinnerRobot 6 күн бұрын
Brilliant!
@cyruschang1904
@cyruschang1904 6 күн бұрын
@@SkinnerRobot 🙏
@marcgriselhubert3915
@marcgriselhubert3915 6 күн бұрын
Very good. However I propose an analytic solution (which is less elegant, I know): We use an orthonormal center O and first axis (OB). The radius of the big semi circle is 3/2 and its equation is x^2 + y^2 = 9/4. Point P has same abscissa than point Q: -1/2, so P(-1/2; p) with p unknown positive real which is the radius of the small semi circle. The equation of this small semi circle is (x+(1/2))^2 + (y-p)^2 = p^2 or x^2 + y^2 +x -2.p.y +1/4 = 0. At the intersection of the two semi circles we have: 9/4 +x -2.p.y +1/4 = 0 or x = 2.p.y -5/2. We replace x by this value in the equation of the big semi circle to obtain the ordinates of the points C and D: (2.p.y -5/2)^2 + y^2 = 9/4 or (4.(p^2)+1).(y^2) -10.p.y +4 = 0. The half sum of these ordinates is (5.p) / (4.(p^2)+1) and is also is p which is the ordinate of P as P is the middle of [C, D], so we have 5 / 4.((p^2)+1) = 1 which gives p = 1. So the radius of the small circle is 1 and the area we are looking for is Pi/2.
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for the feedback ❤️🙏
@NANZH-v6j
@NANZH-v6j 12 сағат бұрын
Another solution ,is to use auxiliary lines to solution equal angle, 😊 cd and ab intersect at point h, connect pa, connect pq and po, then , angle qpo=angle cha---- 1, angle qpo=arctan1/2r---- 2, angle cha=angle paq-angle apc=arctanr - (π/2-arctan1/2r-arctan1/r)----3, Substituting equations 2 and 3 into equation 1, so,arctanr+arctan1/r=π/2, so,r=1, area=π/2
@alexundre8745
@alexundre8745 6 күн бұрын
Bom dia Mestre Respeitosamente desejo-lhe um domingo abençoado Grato pelas aulas.
@PreMath
@PreMath 6 күн бұрын
You are very welcome! Thanks for the feedback ❤️🙏
@johnvriezen4696
@johnvriezen4696 6 күн бұрын
You can clearly see the pink area appears to be a half of a pie. That's why the answer is 1/2π.
@PreMath
@PreMath 6 күн бұрын
Thanks for the feedback ❤️🙏
@waheisel
@waheisel 6 күн бұрын
I think we need the converse of "if a radius is perpendicular to a chord, then it bisects the chord." In other words we need the theorem that states "if a radius bisects a chord then it is perpendicular to it."
@JoanRosSendra
@JoanRosSendra 5 күн бұрын
R²+(1/2)²=PO² (3/2)²-R²=PO² Igualando ambas ecuaciones... R²+(1/2)²=(3/2)²-R² Resolviendo: R=1 Área rosa=π/2 u² Saludos
@AmirgabYT2185
@AmirgabYT2185 6 күн бұрын
S=π/2≈1,571≈1,57
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@Christopher-e7o
@Christopher-e7o 6 күн бұрын
x,2z+5=8
@texitaliano64
@texitaliano64 5 күн бұрын
Il raggio della semicirconferenza di diametro AB vale (1+2) quindi il raggio R R=3/2 la distanza QO vale R-1 QO=(3/2)-1 detto r il raggio della semicirconferenza piccola definisco h=OP con pitagora abbiamo che h=sqrt(R^2-r^2) h=sqrt((3/2)^2-r^2)) QO=sqrt(h^2-r^2) QO=QO sqrt(h^2-r^2)=(3/2)-1 sqrt((sqrt((3/2)^2-r^2)))^2-r^2)=(3/2)-1 sqrt((3/2)^2-r^2-r^2)=(3/2)-1 sqrt((9/4)-2*r^2)=(3/2)-1 (9/4)-2*r^2=(3/2)^2+1-2*(3/2)*1 -2*r^2=-2 -r^2=-1 r=sqrt(1) r=1 Ora calcolo la superficie del semicerchio S=pi*r^2/2 S=pi*1^2/2 S=pi/2
@baljitsingh77
@baljitsingh77 5 күн бұрын
Why opd is right angle
@LuisdeBritoCamacho
@LuisdeBritoCamacho 6 күн бұрын
MY RESOLUTION PROPOSAL : 01) PO^2 = (3 / 2)^2 - r^2 02) PO^2 = r^2 + (1 / 2)^2 03) (9 / 4) - r^2 = r^2 + (1 / 4) 04) 2r^2 = (9 / 4) - (1 / 4) 05) 2r^2 = 8 / 4 06) 2r^2 = 2 07) r^2 = 1 08) r = 1 09) Pink Semicircle Area (PSA) = (r^2 * Pi) / 2 10) PSA = (Pi / 2) sq un 11) PSA ~ 1,571 sq un MY BEST ANSWER : The Pink Semicircle Area is equal to (Pi/2) Square Units, or approx. equal to 1,571 Square Units.
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@unknownidentity2846
@unknownidentity2846 6 күн бұрын
Let's find the area: . .. ... .... ..... Let R be the radius of the white semicircle and let r be the radius of the pink semicircle. Since Q is the point of tangency, we know that the triangle OPQ is a right triangle. Therefore we can apply the Pythagorean theorem: OQ² + PQ² = OP² OQ² + r² = OP² The triangle OCD is an isosceles triangle (OC=OD=R). Since P is the midpoint of CD, the triangles OPC and OPD are congruent right triangles. So we can apply the Pythagorean theorem again: OC² = OP² + PC² R² = OP² + r² ⇒ OP² = R² − r² By combining these two equations we obtain: OQ² + r² = OP² = R² − r² 2r² = R² − OQ² r² = (R² − OQ²)/2 Now we are able to calculate the area of the pink semicircle: R = AB/2 = (AQ + BQ)/2 = (1 + 2)/2 = 3/2 OQ = OA − AQ = r − AQ = 3/2 − 1 = 1/2 r² = (R² − OQ²)/2 = [(3/2)² − (1/2)²]/2 = (9/4 − 1/4)/2 = (8/4)/2 = 2/2 = 1 ⇒ A = πr²/2 = π*1²/2 = π/2 Best regards from Germany
@PreMath
@PreMath 6 күн бұрын
Excellent! Thanks for sharing ❤️🙏
@louisdsouza6976
@louisdsouza6976 6 күн бұрын
You are too fast , we have are having our .note books.and noting down, nefore we copy you have changed. Please put in methodlogy of teaching, you are wasting youf time and the time of U tube watchers
@PreMath
@PreMath 6 күн бұрын
Thanks for the feedback ❤️🙏
@LuisdeBritoCamacho
@LuisdeBritoCamacho 6 күн бұрын
@@louisdsouza6976 🤔
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Circle Theorems - GCSE Higher Maths
13:53
1st Class Maths
Рет қаралды 648 М.
Poland Math Olympiad | A Very Nice Geometry Problem
10:22
Math Booster
Рет қаралды 7 М.
Solve This Math Mystery: Tilted and Inscribed Semicircle Area
15:46
The Phantom of the Math
Рет қаралды 18 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,7 МЛН
2 Squares 1 Semicircle
5:42
Andy Math
Рет қаралды 109 М.
France l can you solve this?? l Olympiad Mathematics
18:01
Math Master TV
Рет қаралды 715 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН