Can you find the area of the Purple triangle? | (Important Geometry skills explained) |

  Рет қаралды 40,501

PreMath

PreMath

Күн бұрын

Пікірлер
@robertbourke7935
@robertbourke7935 Жыл бұрын
Got it! Many thanks. A clever exercise.
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы Жыл бұрын
You can use the chord theorem. Extend the DO to the intersection with the circle and get the diameter. And the diameter is a chord. AD*DC=1*3. CD=3/√5. According to the Pythagorean theorem, we find CB=4/√5. S=0.5*(3/√5)*(4/√5)=1.2.
@howardaltman7212
@howardaltman7212 Жыл бұрын
Beautiful, simple solution. Bravo!
@ОльгаСоломашенко-ь6ы
@ОльгаСоломашенко-ь6ы Жыл бұрын
@@howardaltman7212 Спасибо
@Jack_Callcott_AU
@Jack_Callcott_AU Жыл бұрын
Neat!
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@m.h.6470
@m.h.6470 Жыл бұрын
indeed a much better and simpler solution than the one in the video!
@zdrastvutye
@zdrastvutye 9 ай бұрын
either calculate the intersection with a thales circle or calculate the coordinate product repeatedly: 10 print "premath-can you find the area of the purple triangle" 20 l1=sqr(5):r=2*l1/sqr(5):dim x(1,2),y(1,2):sw=r/(l1+r):w=sw 30 @zoom%=@zoom%*1.4:xd=0:yd=r/2:xb=r:yb=0:n=r*r+l1^2:goto 60 40 xc=r*cos(rad(w)):yc=r*sin(rad(w)):dgu1=(xd-xc)*(xb-xc)/n:dgu2=(yd-yc)*(yb-yc)/n 50 dg=dgu1+dgu2:return 60 gosub 40 70 dg1=dg:w1=w:w=w+sw:w2=w:gosub 40:if dg1*dg>0 then 70 80 w=(w1+w2)/2:gosub 40:if dg1*dg>0 then w1=w else w2=w 90 if abs(dg)>1E-10 then 80 100 print w:la=sqr((xd-xc)^2+(yd-yc)^2):lb=sqr((xc-xb)^2+(yc-yb)^2) 110 x(0,0)=0:y(0,0)=0:x(0,1)=r:y(0,1)=0:x(0,2)=0:y(0,2)=r/2 120 x(1,0)=0:y(1,0)=r/2:x(1,1)=r:y(1,1)=0:x(1,2)=xc:y(1,2)=yc 130 ages=la*lb/2:print "die flaeche=";ages:mass=8E2/r:goto 150 140 xbu=x*mass:ybu=y*mass:return 150 for a=0 to 1:gcol8+a:x=x(a,0):y=y(a,0):gosub 140:xba=xbu:yba=ybu:for b=1 to 3 160 ib=b:if ib=3 then ib=0 170 x=x(a,ib):y=y(a,ib):gosub 140:xbn=xbu:ybn=ybu:goto 190 180 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 190 gosub 180:next b:next a:gcol8:xba=0:yba=0:gosub 140:circle xba,yba,r*mass premath-can you find the area of the purple triangle 53.1301024 die flaeche=1.2 > run in bbc basic sdl and hit ctrl tab to copy from the results window
@spafon7799
@spafon7799 Жыл бұрын
Alternatively: find CD and CB in order to get the area of the triangle as 1/2 * CB*CD. As in the video solution, DO= r/2. Pythagorean on OBD gives (r/2)^2+r^2=5, thus OB=2 and OD=1. Also as in the given solution, extend CD to A, the left point of the circle. Now note that ABC and ADO are similar triangles, since angle AOD and ACB are right angles and OAD and CAB are the same acute angle. Let us call x= DC and y=CB. We have by similar triangles OA/DA=CA/BA. 2/sqrt(5)=(sqrt(5)+x)/4. This gives x=2/sqrt(5). Now you apply pythagorean to triangle BCD to get x^2+y^2=5. Thus 9/5+y^2=5=25/5. Or y^2=16/5 Thus y=4/sqrt(5). Area of the triangle is (1/2)*x*y= (1/2)*(3/sqrt(5))*(4/sqrt(5))= 6/5.
@johnsavard7583
@johnsavard7583 Жыл бұрын
The first useful thing I note is that the vertical radius of the quadrant is divided into two equal parts by point D. So the white triangle below the purple triangle has sides r/2, r, and sqrt(5). That tells me r=2, and the area of that triangle is 1. Now if we extend the quadrant on the left to become a semicircle, line CD, when extended, will (because of the right angle) intercept the point opposite B on the diameter at the bottom; let's call that point X. Angle DBO and angle DXO are equal, and so the triangle BXC is similar to triangle DBO. Triangle DXO and triangle DBO have area 1 each. Triangle BXC has a hypoteneuse of 4 instead of sqrt(5), so its area is 1 times 16/5 because it is scaled up by a factor of 4 over sqrt(5). So the purple triangle has area 6/5, 16/5 minus 2 (which is 10/5).
@phungpham1725
@phungpham1725 Жыл бұрын
1/The radius of the circle= 2 ( it is easy) 2/Extend CD to the left to build the right triangle ABC and the diameter AB. Notice that the angle CDB = 2 the angle DAO. We have tan DAO= 1/2 so tan CDB= 1/ (1-1/4) = 4/3----> BC/DC= 4/3 ------> the triangle BCD is an 3-4-5 triple-----> BC=4/5 BD and DC=3/5 BD The area of the purple triangle = 1/2x 4/5xsqrt5 x 3/5x sqrt5= 1.2 sq units 3/ We can also use the Pythagorean theorem: Let CD and BC be a and b respectively. We have sq(sqrt5+a) + sqb = 16----> 5+sqa+ 2a sqrt5+sqb=16 ---> 5+5+2a sqrt5=16-----> a= 3/sqrt5 and b= 4/sqrt5-----> area= 1/2 x 3/sqrt5 x 4/sqrt5 = 1.2 sq units
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@jimlocke9320
@jimlocke9320 Жыл бұрын
We note that ΔABC and ΔADO are similar. The ratio of sides for ΔADO is (short-long-hypotenuse) is 1:2:√5 or 1/√5:2/√5:1. Applying that ratio to ΔABC and knowing that its hypotenuse is length 4, the two sides are (4)(1/√5) and (4)(2/√5). The area of ΔABC = (1/2)bh = (1/2)(4)(1/√5)(4)(2/√5) = 16/5. The areas of ΔADO and ΔBDO are (1/2)bh = (1/2)(1)(2) = 1 each. Area ΔBCD = Area ΔABC - Area ΔADO - Area ΔBDO = 16/5 - 1 - 1 = 6/5, as PreMath also found.
@saltydog584
@saltydog584 Жыл бұрын
It would have been helpful if the fact that it is a quarter circle at the beginning by indicating angle EOB was a right angle on the original diagram at the beginning.
@tombufford136
@tombufford136 11 ай бұрын
At a quick glance, started solving this in a similar way to the video forming a second Chord using Thales theorem. Then found working arduous without a drawing of the the semi circle. Thank you for the video.
@ProfessorDBehrman
@ProfessorDBehrman Жыл бұрын
Nice problem. Thanks.
@zsoltszigeti758
@zsoltszigeti758 Жыл бұрын
The (semi)circle is x^2+y^2=4, AC line is y=x/2+1. The solution of these are x=-2, y=0 (A point); x=6/5, y=8/5 (C point).
@linzhaoxu
@linzhaoxu 6 ай бұрын
CD=a,BC=b,so a=root(5-bsqr); (a+root5)sqr+b sqr=4sqr; {(root(5-b sqr)+root5}sqr+b sqr=16; so b=4/root5; so a=3/root5, so the sqr about purple zone is 6/5
@quigonkenny
@quigonkenny Жыл бұрын
Another, potentially easier way to measure the area of the larger triangle: We can tell by complementary angles that ∆ABC and ∆ADO are similar. By Pythagorean Theorem: AD² = OD² + OA² AD² = 1² + 2² = 5 AD =√5 CB/OD = AB/AD CB/1 = 4/√5 CB = 4/√5 AC = 2CB = 8/√5 A = ½bh = ½(8/√5)(4/√5) = 16/5 Aₚ= ∆ABC - ∆ABD = 16/5 - 2 = 6/5
@awandrew11
@awandrew11 Жыл бұрын
BC=2, DC=1, therefore DB=Square root 5, Area opf triangleBCD=CBxCD/2=2x1/2=1!?
@LuisdeBritoCamacho
@LuisdeBritoCamacho Жыл бұрын
1) Finding the Radius of the Quarter of a Circle: x^2 + 2x^2 = 5 5x^2 = 5 5x^2 - 5 = 0 5*(x^2 - 1) = 0 x^2 - 1 = 0 x = 1 Radius = 2 lu (linear units) 2) Finding the Slope of the Straight Line passing the points C and D and points B and C: First Slope: m = (1 - 0) / (0 + 2) = 1/2 m * m' = -1 So, the 2nd Slope is m' = - 2 3) Equations of the Straight Lines a) y = x/2 + 1 b) y = - 2x + 4 4) Point of Intersection (Point C); coordinates: x = 1,2 y = 1,6 4) Finding the Distances between Point C and D and Point B and C: CD ~ 1,342 BC ~ 1,789 5) Finding the Purple Area: PA = CD * BC / 2 PA = 1,342 * 1,789 / 2 PA = 2,400 / 2 PA ~ 1,2 su Final Answer: Purple Area equal 1,2 su
@alokranjan4149
@alokranjan4149 Жыл бұрын
Very Beautifully solved by using co-ordinate geometry. So nice 👍
@bigm383
@bigm383 Жыл бұрын
Thanks Professor for a very nice problem.
@PreMath
@PreMath Жыл бұрын
Thanks❤️🌹
@nunoalexandre6408
@nunoalexandre6408 Жыл бұрын
Love it!!!!!!!!!!!!
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@afshinfarzaadi1371
@afshinfarzaadi1371 Жыл бұрын
👍
@DB-lg5sq
@DB-lg5sq Жыл бұрын
شكرا لكم DC=a AD=جذر5 BC=(5-a^2)جذر AB=4 ..... a=3/(5جذر) S=1/2 CB CA =6/5
@uwelinzbauer3973
@uwelinzbauer3973 Жыл бұрын
This one I also was able to find out. Again I used a way different from the video. This question was a bit challenging to me. But that's what we need to improve our skills. Thanks for the interesting video! Greetings 🙏
@jakkima1067
@jakkima1067 3 ай бұрын
AD*DC=(R+1)*1=Sqrt(5)*DC=3. DC=3/Sqrt(5). CB^2=DB^2-DC^2=5-9/5=16/5. CB =4/Sqrt(5). Area=DC*CB=3/Sqrt(5)*4/Sqrt(5)/2=12/10=1,2.
@suryantosunaryo9634
@suryantosunaryo9634 10 күн бұрын
The sides of triagle DBC are 1 and 2, so area = 0.5*1*2= 1.
@LIFEUNFILTEREDb7f
@LIFEUNFILTEREDb7f 10 ай бұрын
In which grade these questions. Come
@deepaagarwal8743
@deepaagarwal8743 Жыл бұрын
Sir can you plz upload some trigno and geometry high level questions
@frooooo7896
@frooooo7896 Жыл бұрын
Why is the area not just 0.5 x 1 x 2. Since the sides of the pink triangle must be 2 and 1.?
@HeywoodUmanoff
@HeywoodUmanoff Жыл бұрын
As it turns out, the sides of the pink triangle don't have to be 2 and 1. In fact, the legs turn out to be 1.74 and 1.40, with the angle between the shorter leg and the hypotenuse = 51.14 degrees. This is different from the 63.43 degree angle between the shorter leg and hypotenuse of the 1, sqrt5 and 2 side lengths of right triangle DOB. I was thrown off by this issue initially as well.
@giuseppemalaguti435
@giuseppemalaguti435 Жыл бұрын
CB=b...intanto calcolo r...(r/2)^2+r^2=5...r=2...poi imposto l'equazione risolutiva,..b=√5cos(arccos(b/2r)-arctg(1/2))..quindi ,calcolo l'altro cateto CD...e quindi l'area..... l'equazione diventa..b/2+√(1-b^2/16=b...b=4/√5...CD=√(5-16/5)=3/√5...A=(4/√5*3/√5)/2=6/5.... alleluia
@hermannschachner977
@hermannschachner977 Жыл бұрын
bravo seppe, so denke auch ich (Österreich): 2,5 x sin 36,87.... x cos 36,87.... = 1.2
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@marcgriselhubert3915
@marcgriselhubert3915 Жыл бұрын
The raduis of the circle is 2 (easy, as evrerybody says). In an adapted orthonormal we have O(0;0), B(2;0) E(0;2) D(0;1) and C(2 cos(x); 2 sin(x)) where x is unknown between 0 and 90° Then VectorDC (2 cos(x); 2 sin(x) -1) and Vector BC (2 cos(x) -2; 2 sin(x)) . These vectors are orthogonal, so we heve: (2 cos(x)). (2 cos(x) -2) + (2 sin(x) -1). (2 sin(x)) = 0. We develop, use the fact that cos(x)^2 + sin(x)^2 = 1, and simplify. We obtain: 2 cos(x) + sin(x) = 1. This is a well known trigonometric equation. Let's divide by sqrt(5) and consider x0 between 0° and 90° as cos(x0) = 2/sqrt(5) and sin(x0) = 1/sqrt(5). We get cos(x0).cos(x) + sin(x0).sin(x) = cos(x0), or cos (x-x0) = cos(x0) Then x - x0 = x0 (mod 360°) or x -x0 = -x0 (mod 360°), giving that x = 2x0 is the only solution between 0° and 90° So, cos(x) = cos (2. x0) = 2 (cos(x0))^2 - 1 = 2. (4/5) - 1 = 3/5, and sin(x) = sin(2.x0) = 2. sin(x0). cos x0) = 2.(1/sqrt(5)). (2/sqrt(5)) = 4/5. Now we have point C (6/5; 8/5) and then Vector DC (6/5; 3/5), giving DC = sqrt ((36/25) + (9/25)) = sqrt(45)/5 = 3.sqrt(5)/5 and also Vector BC (-4/5; 8/5), giving BC _ sqrt ((16/25) + (64/25)) = sqrt (80)/5 = 4.sqrt(5)/5 The area of the triangle is (1/2). DC. BC = 6/5 when simplified.
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@HeywoodUmanoff
@HeywoodUmanoff Жыл бұрын
How do we know that C, D and A are colinear?
@vimsriani
@vimsriani Жыл бұрын
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@hemalathar8842
@hemalathar8842 Жыл бұрын
Is it possible for them to ask this in 10th board exam?
@Weizsaecker
@Weizsaecker Жыл бұрын
0:23 Stop! How does he know that DE = DA? Is there a theorem describing a pythagorean triangle in a quarter circle?
@xsilata
@xsilata Жыл бұрын
Triangles AOD and ABC are similar. The calculation is easy.
@PreMath
@PreMath Жыл бұрын
Thanks
@pralhadraochavan5179
@pralhadraochavan5179 Жыл бұрын
Good evening sir
@PreMath
@PreMath Жыл бұрын
Hello dear ❤️
@devondevon4366
@devondevon4366 Жыл бұрын
1
@RazvanMihaeanu
@RazvanMihaeanu Жыл бұрын
Thank God for the right angle 'cause otherwise... we would have been screwed!
@wackojacko3962
@wackojacko3962 Жыл бұрын
If Schrodinger's Cat could have thought outside the box while inside the box, could the cat find the square root of a tree? Just curious...🙂
@billycox475
@billycox475 Жыл бұрын
Well done, dad jokes always welcome!
@PreMath
@PreMath Жыл бұрын
Thanks❤️
@edsznyter1437
@edsznyter1437 7 ай бұрын
You're really overcomplicating things. Triangles ADO and ACB are similar. The ratio of the hypotenuses is 4:Sqrt[5]. Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5. [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.
@edsznyter1437
@edsznyter1437 7 ай бұрын
You're really overcomplicating things. Triangles ADO and ACB are similar. The ratio of the hypotenuses is 4:Sqrt[5]. Thus, the ratio of the areas is the square of that, 16:5. So [ACB]=16/5. [DCB]=[ACB]-2[ADO]=16/5-10/5=6/5.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
Listen to Ben Finegold · Road to 2500, Game 86
42:24
Hanging Pawns
Рет қаралды 170
Canada Math Olympiad Problem | Best Math Olympiad Problems | Geometry
18:06
Find the Area of the Blue Triangle Inside of a Rectangle
9:45
The Math District
Рет қаралды 1 МЛН
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 528 М.
The Mathematics of Winning Monopoly
18:40
Stand-up Maths
Рет қаралды 3 МЛН