An Equation For Weierstrass Substitution

  Рет қаралды 11,485

Prime Newtons

Prime Newtons

Күн бұрын

Пікірлер: 61
@eurocouto
@eurocouto 6 ай бұрын
This is a beautiful problem with a charming solution. I loved it! Thanks for this lovely gift!
@AutoDisheep
@AutoDisheep 6 ай бұрын
Ah this was the coolest way to discover the first equation you learn in trig
@herbertsusmann986
@herbertsusmann986 2 ай бұрын
Nice! Who would have thought by substituting variables like this anything productive would result. Brilliant!
@omograbi
@omograbi 6 ай бұрын
This is the pleasure of math, It doesn't stop from make us wonder.
@baidonchandipo2804
@baidonchandipo2804 2 ай бұрын
You know what! Because of how your brain keeps on improving everyday mathematically, trust me, you will keep on solving more hard olympiad math questions
@BartBuzz
@BartBuzz 6 ай бұрын
Sometimes math just has to be fun. This was one of those times!
@vladimir10
@vladimir10 6 ай бұрын
Awesome development. But no uniqueness proof?
@kirthiramaniyer4866
@kirthiramaniyer4866 6 ай бұрын
You are my favorite teacher
@ThAlEdison
@ThAlEdison 6 ай бұрын
because I know the identities of the Weirstrauss substitution, I immediately saw that it was csc^x(t)-cot^x(t)=1
@darickmendes969
@darickmendes969 6 ай бұрын
You never gonna lose people , you are great teacher haha
@Pramit1156
@Pramit1156 6 ай бұрын
The spontaneous realization you had is the better way to go through , it will give rise to [cosec(2A)]^x - [cot(2A)]^x = 1 which is only possible if x = 2
@Marcus-y1m
@Marcus-y1m 6 ай бұрын
I had no clue in the beginning, but even so I know in which level is this equation, thanks sir
@franolich3
@franolich3 6 ай бұрын
A quick way to get the answer x=2... [1] ((1+a^2) / 2a)^x - ((1-a^2) / 2a)^x = 1 Let: p = (1+a^2) / 2a q = (1-a^2) / 2a Substituting p and q into [1]: [2] p^x - q^x = 1 Note: p + q = 1/a p - q = a Therefore: p^2 - q^2 = (p+q)(p-q) = (1/a).a = 1 So x=2 satisfies [2] and is therefore a solution to [1]. To prove uniqueness of this solution note that: 0 < a < 1 => 0 < a*2 < 1 => 0 < 1-a^2 < 1+a^2 => 0 < q < p -inf < ln(q) < ln(p) [3] So when x > 0: -inf < x.ln(q) < x.ln(p) -inf < ln(q^x) < ln(p^x) 0 < q^x < p^x [4] 0 < 1/p^x < 1/q^x [5] Also note: p - 1 = (1+a^2)/2a - 2a/2a = (1-a)^2/2a > 0 => p > 1 => ln(p) > 0 Given [3] and [4] then: ln(p).p^x > ln(q).q^x [6] Let: f(x) = p^x - q^x So [1] is equivalent to solving: [7] f(x) = 1 Case 1) x = 0: f(0) = 1 - 1 = 0 so x=0 not a solution. Case 2) x > 0: f'(x) = ln(p).p^x - ln(q).q^x > 0 because of [6] So f is strictly increasing and there can be at most one positive solution to [7] which is x=2. Case 3) x < 0: f(x) = p^-|x| - q^-|x| = 1/p^|x| - 1/q^|x| < 0 because of [5] So no negative solutions to [7]
@secretsecret1713
@secretsecret1713 6 ай бұрын
👍
@xyz9250
@xyz9250 6 ай бұрын
That’s how I got x=2, but your effort to prove that’s the only answer is great.
@omm-o6i
@omm-o6i 5 ай бұрын
I didn't get the uniqueness of the solution
@franolich3
@franolich3 5 ай бұрын
@user-fq7ft1tz9k The first part of the uniqueness proof establishes some inequalities. The second part uses these inequalities to show that p^x-q^x=1 has only one solution (equivalent to the original problem). I have added some more explanation to the proof but if this still does not make sense then let me know which part is giving you trouble.
@sobolzeev
@sobolzeev 6 ай бұрын
To say the truth, the one familiar with an identity (1+A)² - (1-A)² = 4A will guess the solution x=2 quite fast. It is more important to explain why it is unique. This is where we really need the form (cosθ)ˣ + (sinθ)ˣ = 1 with 0
@m.h.6470
@m.h.6470 6 ай бұрын
I don't know, where you got (2a/(1+a²))ˣ + ((1-a²)/(1+a²))ˣ = 1 from, but it is NOT the same as ((1 + a²)/(2a))ˣ - ((1 - a²)/(2a))ˣ = 1 For starters, your equation has a solution for a = 0, while the original equation does not.
@sobolzeev
@sobolzeev 6 ай бұрын
@@m.h.6470 My sincere commiseration.
@sobolzeev
@sobolzeev 6 ай бұрын
@@m.h.6470 First, I recommend you to study the original question and learn there that we solve the equation for an unknown x, while 00 as well. Hence we can multiply the equation by (2a/(1+a²))ˣ. I am sure you can do it, obtaining 1 - ((1-a²)/(1+a²))ˣ = (2a/(1+a²))ˣ Now you are left to add ((1-a²)/(1+a²))ˣ on both sides to the equation.
@m.h.6470
@m.h.6470 6 ай бұрын
@@sobolzeev I agree with your calculation, but your comment clearly stated, that the original equation can be rewritten to your equation. You don't mention 0 < a < 1 AT ALL. And without that distinction your comment is simply wrong. With the inclusion of 0 < a < 1, it is correct, but it needs to be made clear, that any result of this new equation is only valid inside these boundaries, while the original equation is NOT limited by these boundaries. The original equation only has the limitation of a ≠ 0, just based on the terms themselves.
@sobolzeev
@sobolzeev 6 ай бұрын
@@m.h.6470 Please accept my even deeper commiseration. You did not observe ((1-a²)/(2a))ˣ. You cannot raise a non-positive base into a real power. Thus, the bounds 0
@prabhatrexkira398
@prabhatrexkira398 6 ай бұрын
Can we do it without Trigonometry?
@m.h.6470
@m.h.6470 6 ай бұрын
You can prove that x = 2 is a solution without trig, but proving, that it is the only solution is tricky - if not impossible - without it.
@kushagrasharma5983
@kushagrasharma5983 6 ай бұрын
Sir could you please teach how to solve cubic equations without hit and Trial method?
@Alians0108
@Alians0108 6 ай бұрын
There's an extremely long formula if you are super commited. Then whatever that factor is, will yield a quadratic * (x-ă)
@chintu4398
@chintu4398 6 ай бұрын
@@Alians0108 can you pls tell what the formula is...or where can I find it?any website??
@GURPARASSINGH-sg8sv
@GURPARASSINGH-sg8sv 6 ай бұрын
Lagrange resolvent​@@chintu4398
@ThAlEdison
@ThAlEdison 6 ай бұрын
Given a cubic ax^3+bx^2+cx+d=0 x^3+(b/a)x^2+(c/a)x+d/a=0 let x=y-(b/3a) (y-(b/3a))^3+(b/a)(y-(b/3a))^2+(c/a)(y-(b/3a))+d/a=0 y^3-(b/a)y^2+(b/a)^2(y/3)-(b/a)^3(1/27)+(b/a)y^2-(b/a)^2(2y/3)+(b/a)^3(1/9)+(c/a)y-(bc/a^2)(1/3)+(d/a)=0 y^3-(b^2-3ac)y/3a^2+(2b^3-9bca+27da^2)/27a^3=0 rearrange to y^3=(b^2-3ac)y/3a^2-(2b^3-9bca+27da^2)/27a^3 let y=u+v (u+v)^3=u^3+3u^2v+3uv^2+v^3 = 3uv(u+v)+(u^3+v^3) =(3uv)y+(u^3+v^3) =(b^2-3ac)y/3-(2b^3-9bca+27da^2)/27a^3 3uv=(b^2-3ac)/3a^2 uv=(b^2-3ac)/9a^2 (uv)^3=(b^2-3ac)^3/729a^6 u^3+v^3=-(2b^3-9bca+27da^2)/27a^3 u^6+(2b^3-9bca+27da^2)u^3/27a^3+(uv)^3=0 u^6+(2b^3-9bca+27da^2)u^3/27a^3+(b^2-3ac)^3/729a^6=0 u^3=(-(2b^3-9bca+27da^2)+sqrt((2b^3-9bca+27da^2)^2-4(b^2-3ac)^3))/54a^3 u=cbrt(-8b^2+36bca-108da^2+sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))/6a v^3=(-(2b^3-9bca+27da^2)-sqrt((2b^3-9bca+27da^2)^2-4(b^2-3ac)^3))/54a^3 v=cbrt(-8b^2+36bca-108da^2-sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))/6a y=u+v=(cbrt(-8b^2+36bca-108da^2+sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))+cbrt(-8b^2+36bca-108da^2-sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3)))/6a x=y-b/3a=(cbrt(-8b^2+36bca-108da^2+sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))+cbrt(-8b^2+36bca-108da^2-sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))-2b)/6a x=(cbrt(-8b^2+36bca-108da^2+sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))+cbrt(-8b^2+36bca-108da^2-sqrt((8b^3-36bca+108da^2)^2-64(b^2-3ac)^3))-2b)/6a
@HighKingTurgon
@HighKingTurgon 6 ай бұрын
I am enjoying the Scriptures at the ends of videos, Mr Newtons. Could you follow the 1/tan2a thread in a separate video? I was hoping you'd come back to that. I mean, I COULD do it myself, but I love walking through problems with your guidance.
@barryzeeberg3672
@barryzeeberg3672 2 ай бұрын
Groucho Marx came up with the "why-a-duck" substitution.
@balubaluhehe2002
@balubaluhehe2002 6 ай бұрын
At 4:27, you could have used 1/tan(2A) because it would have still led to cos(2A)/sin(2A), so it wouldn't have changed anything
@SiladityaSen1993
@SiladityaSen1993 5 ай бұрын
One question though: the question says 0
@prabhatrexkira398
@prabhatrexkira398 6 ай бұрын
U r a Magician ❤
@laman8914
@laman8914 6 ай бұрын
We are not mathematicians, but our thinking tells us that this is just one solution for a particular situation, which is within the trigonometry dimension. But there may be other dimensions outside of this one. Is it proper to mention the limitations of this solution?
@ethandasilva8243
@ethandasilva8243 6 ай бұрын
Excellent!
@belindedireds
@belindedireds 6 ай бұрын
Great development, but how can i be sure that this is the only solution?
@jameyatesmauriat6116
@jameyatesmauriat6116 6 ай бұрын
Which book contains these hard concepts?
@hammadsirhindi1320
@hammadsirhindi1320 6 ай бұрын
The condition 0
@zintows
@zintows 6 ай бұрын
I love your videos! You are a very charming person
@PrimeNewtons
@PrimeNewtons 6 ай бұрын
You are so kind
@dhruvm.s.1103
@dhruvm.s.1103 6 ай бұрын
Try jee advanced questions.....
@nasrullahhusnan2289
@nasrullahhusnan2289 6 ай бұрын
u=(1+a²)/2a =½[(1/a)+a] v=(1-a²)/2a =½[(1/a)-a] u+v=1/a, u-v=a and (u^x)-(v^x)=1 u²-v²=1 Comparing (u^x)-(v^x)=1 to u²-v²=1 it is clear that x=2
@ahmedkafi7524
@ahmedkafi7524 6 ай бұрын
Thank you.
@dirklutz2818
@dirklutz2818 6 ай бұрын
Amazing!
@SidneiMV
@SidneiMV 6 ай бұрын
wow! how awesome!
@Harrykesh630
@Harrykesh630 6 ай бұрын
a = tan(x) ??
@nothingbutmathproofs7150
@nothingbutmathproofs7150 6 ай бұрын
I would normally say that this was sweet, but to use your terminally I'll say that this was smooth. Is there even another way to solve this?
@PrimeNewtons
@PrimeNewtons 6 ай бұрын
Yes. Someone posted a solution in the comments.
@GURPARASSINGH-sg8sv
@GURPARASSINGH-sg8sv 6 ай бұрын
Sir when you were avoiding to put the value of tan 2a My soul was speaking please please please no no!!!!
@KazACWizard
@KazACWizard 6 ай бұрын
i just retwrote each term as cosec(a)^x - cot(a)^x=1 then rearranged to get the end result.
@robot8324
@robot8324 6 ай бұрын
Thanx❤❤❤❤❤
@comdo777
@comdo777 6 ай бұрын
asnwer=1ax
@comdo777
@comdo777 6 ай бұрын
cos + tan what =1 but asnwer=2x
@AssetOspanov
@AssetOspanov 6 ай бұрын
x=2
@m.h.6470
@m.h.6470 6 ай бұрын
Solution: (no trig) with 0 < a < 1: ((1 + a²)/(2a))^x - ((1 - a²)/(2a))^x = 1 assuming a = 0.1: ((1 + (0.1)²)/(2(0.1)))^x - ((1 - (0.1)²)/(2(0.1)))^x = 1 ((1 + 0.01)/0.2)^x - ((1 - 0.01)/0.2)^x = 1 (1.01/0.2)^x - (0.99/0.2)^x = 1 (10.1/2)^x - (9.9/2)^x = 1 (5.05)^x - (4.95)^x = 1 With a keen eye, and knowing about the difference of two squares, you can see, that (5.05)² - (4.95)² = 1 because: (5.05 + 4.95)(5.05 - 4.95) = 1 10 * 0.1 = 1 1 = 1 assuming a = 0.9: ((1 + (0.9)²)/(2(0.9)))^x - ((1 - (0.9)²)/(2(0.9)))^x = 1 ((1 + 0.81)/1.8)^x - ((1 - 0.81)/1.8)^x = 1 (1.81/1.8)^x - (0.19/1.8)^x = 1 (18.1/18)^x - (1.9/18)^x = 1 It is a little bit more difficult to see, but: (18.1/18)² - (1.9/18)² = 1 (18.1/18 + 1.9/18)(18.1/18 - 1.9/18) = 1 (20/18)(16.2/18) = 1 324/324 = 1 1 = 1 so in general: ((1 + a²)/(2a))² - ((1 - a²)/(2a))² = 1 ((1 + a²)/(2a) + (1 - a²)/(2a))((1 + a²)/(2a) - (1 - a²)/(2a)) = 1 ((1 + a² + 1 - a²)/(2a))((1 + a² - 1 + a²)/(2a)) = 1 (2/(2a))((2a²)/(2a)) = 1 (1/a)(a) = 1 a/a = 1 1 = 1 so with x = 2, a only has to be a ≠ 0
@badralshammari8004
@badralshammari8004 6 ай бұрын
The light is only from god brother
Show that u + v + w = 6
11:39
Prime Newtons
Рет қаралды 9 М.
Find the maximum value of n
16:16
Prime Newtons
Рет қаралды 14 М.
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 8 МЛН
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 16 МЛН
A Diophantine Equation  @pkqualitymath1234
14:11
Prime Newtons
Рет қаралды 16 М.
A limit that looks like e
9:39
Prime Newtons
Рет қаралды 12 М.
WHAT functions are EQUAL to their derivative?
5:17
Math Mastery with Amitesh
Рет қаралды 14 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 85 М.
Bernoulli's Inequality
12:13
Prime Newtons
Рет қаралды 11 М.
How to Solve Palindrome Equations
13:01
Prime Newtons
Рет қаралды 15 М.
Solving An Insanely Hard Problem For High School Students
7:27
MindYourDecisions
Рет қаралды 3,5 МЛН
Elliptic functions 1. Weierstrass function.
32:05
Richard E Borcherds
Рет қаралды 29 М.
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 8 МЛН