Proof by Strong Induction [Discrete Math Class]

  Рет қаралды 8,225

Mathematical Visual Proofs

Mathematical Visual Proofs

Күн бұрын

Пікірлер: 31
@jakobr_
@jakobr_ 2 жыл бұрын
43: assume it is possible. 43 is an odd number, so we need an odd number of 9s. 43-9 = 34. The remaining 9s can be paired into 18s, which each can be instead represented by 3*6. Iff we can add 6s and 20s to get 34, 43 is possible. 6a + 20c = 34. Divide by 2. 3a + 10c = 17. Checking mod 3, c=2 or 5 or 8 etc. All of these result in sums greater than 17. Therefore a
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
Definitely true! But quicker not to go class by class :).
@jakobr_
@jakobr_ 2 жыл бұрын
@@MathVisualProofs That is debatable, all six can be done at once with a little generalization. In my opinion it gets the essence of the proof across a lot more clearly to divide the solution into classes. When you make use of strong induction, we don’t actually need *all* of that information, the info we need follows a certain structure, in that for any integer we *only* need to know whether it worked for exactly the integer six below the one in question. This is not like the prime factorization example where all we know about a composite number’s nontrivial factors is that those factors are less than it.
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
@@jakobr_ agreed it is debatable :) the two techniques are logically equivalent but from a pedagogical viewpoint the idea is to talk about remembering one case vs remembering many. Especially when people are first learning the idea of splitting into cases for different induction steps is advanced. Plus things like the chicken nugget problem have non (well not explicit) induction proofs. :)
@doomcake2020
@doomcake2020 3 ай бұрын
This was the video that truly clarified strong induction for me, thank you so much!
@MathVisualProofs
@MathVisualProofs 3 ай бұрын
Glad it was helpful!
@Tucan_-wj5qo
@Tucan_-wj5qo Жыл бұрын
godsent thx, not gonna lie made me understand it better then sitting 1 hour at collage lecture
@epic_editz_x
@epic_editz_x 9 ай бұрын
These videos should get millions of views
@MathVisualProofs
@MathVisualProofs 9 ай бұрын
Thanks!
@supu8599
@supu8599 2 жыл бұрын
Very good 👍. Learned a new thing today
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
Thanks!
@rezhannoori2998
@rezhannoori2998 2 ай бұрын
Amazing Video. Thank you for doing this!
@MathVisualProofs
@MathVisualProofs 2 ай бұрын
Thanks for checking it out.
@pengin6035
@pengin6035 2 жыл бұрын
Nice! Here is another challenge using this principle for the ones interested: Show that for all n≥4, there are non-zero rational numbers a_i from i=1 to n such that the sum of the a_i² is equal to 1 while the sum of the a_i is equal to 0. Bonus question: Prove that we don't find these a_i for n=3 Bonus bonus question: Can you show the first result while only using weak induction and not strong induction?
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
Nice problems!
@jakobr_
@jakobr_ 2 жыл бұрын
Induction step: if there exist a_i from 1 to k-1 where the sum of a_i = 0 and the sum of (a_i)^2 = 1, then set a_k = 0. This changes neither sum, and since zero is rational this is a valid sequence of k rational numbers satisfying the same conditions. base case: n=4 Assume such a_i exist. Express the four rational numbers in terms of their least common denominator: b/m, c/m, d/m, e/m. Now b+c+d+e = 0, and b^2 + c^2 + d^2 + e^2 = m^2. All five numbers are integers, and m can be assumed to be positive. It’s easy to see that b = d = 1, c = e = -1, and m=2 satisfy these conditions.
@pengin6035
@pengin6035 2 жыл бұрын
@@jakobr_ Ahhh I again forgot about the non-zero thing... Yeah, assume that none of the a_i are 0, otherwise it's easy... But good catch :D
@jakobr_
@jakobr_ 2 жыл бұрын
Bonus: n=3 the n=1 case is impossible because 0≠1. the n=2 case has one unordered pair of solutions: (2^(-1/2),-2^(-1/2)) which are not rational, this is made clear by graphing the two sums. The n=3 problem is equivalent to finding positive integers a, b, c, and m such that a + b - c = 0 and a^2 + b^2 + c^2 = m^2. m can be asserted to be positive for obvious reasons. It’s clear that, when none of the rational numbers are zero, they cannot all have the same sign. And if any were zero, there would be solutions for a case where n
@aubrie3568
@aubrie3568 8 ай бұрын
this is an amazing video, thank you!
@MathVisualProofs
@MathVisualProofs 8 ай бұрын
Glad you liked it!
@oojivel
@oojivel 2 ай бұрын
wouldnt the prime factorization proof have infinitely many base cases?
@MathVisualProofs
@MathVisualProofs 2 ай бұрын
You can avoid that as I do. You get two cases for n : if it’s prime you’re done; if not, factor. You can also have infinitely many base cases but that’s not as clean because then when you grab an arbitrary integer it is still cases (is it already proved by base case or is it a number that factors).
@oojivel
@oojivel 2 ай бұрын
@@MathVisualProofs I see! Thank you very much, I am having such a hard time applying complete induction for some reason.. I keep getting stuck in the induction step part of the proof where I have to relate the induction hypothesis to the predicate im trying to prove.
@MathVisualProofs
@MathVisualProofs 2 ай бұрын
it takes some practice. Did you watch the precursor to this video? That cis on standard induction and tries to give some idea about how to go about it.
@supu8599
@supu8599 2 жыл бұрын
7:06 20+20+9-6
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
So what are a, b, and c then? ;)
@supu8599
@supu8599 2 жыл бұрын
@@MathVisualProofs nothing
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
@@supu8599 hah! Oh I missed the minus sign :) good one
@supu8599
@supu8599 2 жыл бұрын
@@MathVisualProofs 😤
@mathdoctor2370
@mathdoctor2370 2 жыл бұрын
Can you give me your manim source code via email?
@MathVisualProofs
@MathVisualProofs 2 жыл бұрын
Yes. I can't promise it will be readable :)
Division Theorem/Division Algorithm
2:33
Mathematical Visual Proofs
Рет қаралды 29 М.
Proof by Strong Induction (full lecture)
28:32
Dr. Valerie Hower
Рет қаралды 40 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,2 МЛН
The Magic of Induction - Numberphile
18:05
Numberphile
Рет қаралды 157 М.
Strong induction example 1
10:24
dmkoslicki
Рет қаралды 23 М.
Mathematical Induction Practice Problems
18:08
The Organic Chemistry Tutor
Рет қаралды 1,8 МЛН
Discrete Math II - 5.2.1 Proof by Strong Induction
16:22
Kimberly Brehm
Рет қаралды 107 М.
A Strong Induction Proof
13:29
blackpenredpen
Рет қаралды 52 М.
Strong Induction // Intro and Full Example
10:09
Dr. Trefor Bazett
Рет қаралды 230 М.
The Subfactorial is Hilarious
24:00
Wrath of Math
Рет қаралды 195 М.
What does mathematical induction really look like?
10:51
Zach Star
Рет қаралды 151 М.
"It's just a Coincidence"
8:28
Digital Genius
Рет қаралды 687 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,2 МЛН