One of THE most beautiful proofs for the gamma function...just loved it...I usually don't subscribe to a channel after watching just one video but you deserved it
@gustavosouza5600 Жыл бұрын
wow, i was looking for a proof for this integral for a long time and you gave me a neat one. thank you
@henrykwieniawski7233 Жыл бұрын
Finally! I’ve been searching all over for a proof. Very well done!
@gian2kk5 жыл бұрын
Been looking for this for years! Thank you very much!
@chromiyum68492 жыл бұрын
ABSOLUTELY mind blowing! Thanks for this
@oakleymc93003 жыл бұрын
Mistake in the opening screen; e^{-nx} should read e^{-x}.
@michaelliu63232 жыл бұрын
same finding for me
@spdas5942 Жыл бұрын
Sir, you boosted me up by proving the gamma function and n! in this unique and understandable way. Hat off you ! ❤ from India. Remain healthy and vital.
@hardcorelevelingwarrior63242 жыл бұрын
Excellent proof, well explained!
@kevinsommerfield63414 жыл бұрын
This was a good proof, but there is an error in the first slide. You have written e^(-nx) where you wanted e^(-x). I wouldn't nitpick, but I just don't want anyone to be confused. Again, nice proof!
@34sonamrani453 жыл бұрын
kzbin.info/www/bejne/oXLLaGyoltOFsJY
@nathandyson34623 жыл бұрын
Thank you for this! I was was wondering about this for too long!
@Huehhee77775 жыл бұрын
Great explanation! I really needed this
@monochr0m6 жыл бұрын
Great video! :) it would be nice to see just what happens when n is actually from R or even C instead of a natural number
@LearnMathsFree6 жыл бұрын
Hi Max, Thanks for your comment! One can prove that the integral for n! converges for all complex n which have real part greater than -1. You can Google 'analytic continuation of the gamma function' for some nice articles about this. In particular, non-integer values of n! are crucial for the functional equation of the Riemann zeta function (see here: en.wikipedia.org/wiki/Riemann_zeta_function#Riemann's_functional_equation ) or 'fractional calculus', which extends the notion of the 'nth derivative' to non-integer values of n.
@reinersim81444 жыл бұрын
But do you have any videos on fractional calculus or any way to define transformations in porous media?
@BPEMEHA4 жыл бұрын
So bloody good, thanks, mate.
@utuberaj60 Жыл бұрын
Great video. Deducing the factorial from this integral using the Leibnitz Rule of Differentiating Under the Integral Sign (DIUS) is indeed a novel approach. There is only ONE problem in my understanding of the definition of the Gamma function - please pause at 7:58 min of the video. Setting A=1 you have got the needed function But initially you had DEFINED the Gamma function where "e" is raised to "nx". This does not match with the final answer you got pretty nicely at 7:58mins. Secondly,just yesterday I saw another video by BlackpenRedpendefining the "Pi" function = /int (0 to infinity) x^n *e^-x = n!. The Gamma function is defined very similarly except that n-->n-1. This is the standard definition in all text books. Can you please check and revert please?
@alisiraydemir Жыл бұрын
I believe it is just a typo, it should be "a" not n in the first case.
@reinersim81444 жыл бұрын
Great explanation! Concise yet complete!
@MIVSIO Жыл бұрын
Explanation is just too awesome
@matthewjchamplin2 жыл бұрын
"1 to the power of anything is always one" *laughs in complex number*
@Tannz0rz4 жыл бұрын
Fantastic proof, thank you.
@34sonamrani453 жыл бұрын
kzbin.info/www/bejne/oXLLaGyoltOFsJY
@suzum0978 Жыл бұрын
This was gorgeous
@Noah-jz3gt Жыл бұрын
I like your channel name 🤣and thanks for such a neat proof!
@Manuel-pd9kf4 жыл бұрын
Great explanation
@Sumner185 жыл бұрын
What are the implications from setting A to be a different value at the end instead of A=1?
@LearnMathsFree5 жыл бұрын
Hi Sumner Losenn, No real implications as far as I know, other than that you'd get an expression for the integral of x^n e^(-tx) for suitable t.
@ny6u4 жыл бұрын
the implication is simply that you would have to multiply your evaluated integral result by A^(n+1) every time in order to get n!
@kuangmarial7390 Жыл бұрын
Very precise and understandable. Thank you for the nice lecture
@teamzumali2914 Жыл бұрын
TYSM, u're a life saver
@mathteacher26514 жыл бұрын
excellent - made it look easy
@xgiacomocalore64905 жыл бұрын
Simply, clearly.. super 👏👏💪💪
@bijoydas60444 жыл бұрын
THANK YOU , THANK YOU SIR for this easy explanation
@premkumarsr40212 жыл бұрын
Lovely explanation
@theprojects66404 жыл бұрын
Wow what a great video !
@lm581422 жыл бұрын
The equation shown initially where e is raised to -nx is incorrect. It needs to be raised to -x for the equality to hold.
@oringaapollo28334 жыл бұрын
How do you differentiate a gama function
@ny6u4 жыл бұрын
Very nicely done !
@coreydavis64274 жыл бұрын
A very educational video thank you.
@anandjee29014 жыл бұрын
Thanks bro I understood it well Execp for the thing that why you put A=1 Plz explain
@mohfa18064 жыл бұрын
you can choosa A to be any positive integer , for every value of A you will get different valid equation...taking A=1 will result in a very special equation which is the gamma function....
@chessandmathguy2 жыл бұрын
Since it holds true for any positive value of A, then it holds true when A=1. And A^(n+1) is way easier to simplfy when A is 1 than when A is any other positive number.
@Inspirator_AG1122 жыл бұрын
I am thinking it must be possible to do this with tetration.
@aricwang51079 ай бұрын
Is there a reason as to why the integral of the exponential function helps prove the gamma function?
@RefluxCitadelRevelations4 жыл бұрын
Super clear, super cool, thank you.
@adam-fk2lu3 жыл бұрын
This is so beautiful oh my god
@optotran3743 Жыл бұрын
Question: How is the Gamma function used to calculate the factorial of a decimal number when the "n" from the proof refers only to natural numbers (1,2,6,24...)?
@siddanthvenkatesh2744 Жыл бұрын
I believe the factorial is only defined for natural numbers. So when extending to reals it you get choose what to do. As long as it satisfies rules of factorials like n! = n * (n-1)! and equals the factorial for natural numbers you should be good.
@thefantasticterrormelon13634 жыл бұрын
Great explanation! :D
@spdas594217 күн бұрын
It was devived for positive integer and no derivetive 0. Is it true for fraction and complex number ? Kindly justify. Thanks and hat’s off for the amazing video sir ! Long live sir. ❤ U.
@sukanya44982 жыл бұрын
Awesome Video! Thankyou ! ❤️🙌🏼
@digbycrankshaft75723 жыл бұрын
Nicely done
@o3235 Жыл бұрын
The problem with this proof is it's shown if n is integer but this also work for fractions
@Omaryllo2 жыл бұрын
what happened to the n in the power of e?
@yurfwendforju9 ай бұрын
Yea but I believe this only proofes it for integers right? Why dies it now work with all Real Numbers?
@vairavanvairavan48446 ай бұрын
Post the proof for the " Leibnitz integral rule".How Leibnitz just postulated this theory for differentiation under integration.
@xgiacomocalore64905 жыл бұрын
Very fine!
@timandersen8030 Жыл бұрын
What's the intuition for picking that initial integral e ^ -ax and later differentiating both sides?
@mohfa18064 жыл бұрын
wow...salute
@physicsperadox78492 жыл бұрын
What is the physical significant of gamma function
@saidmurodsultonov11843 жыл бұрын
Thank you
@bjdthethreecoolmathfolk25284 жыл бұрын
Thanks this helped
@ahmadmassalkhi5982 жыл бұрын
Amazing
@virusalgebra333 жыл бұрын
Everything thing is OK. But the Wikipedia (link that u provided in the description) says that interchange of differential operator and integral operator under suitable conditions. You may note that integral is definite. But in this gamma function, the integral is indefinite. Can you explain it please?
@subhradipporel2854 жыл бұрын
if we had started with plus A , I think something strange must have happened ... it will show that sum under the curve x to the power n scaled by e to the power x converges which is absurd
@34sonamrani453 жыл бұрын
kzbin.info/www/bejne/oXLLaGyoltOFsJY
@virusalgebra333 жыл бұрын
YES
@PULOK-CSE-213 жыл бұрын
You so awesomely described brother🌹🌹🌹🌹😬😬😬😬god bless you🥰😍😍😍
@bijoydas60444 жыл бұрын
👌👍 sir, I have a doubt in infinite limit definition of gamma function. is there any proof of limit(n→∞){(1*2*3*.....*n)*n^z}/{z*(z+1)*(z+2)*.....*(z+n)}=(n-1)! or (z)
@DHAVALPATEL-bp6hv4 жыл бұрын
BEEEE UUUUU TTTT FULLLLLL !!!!!
@boogychan3 жыл бұрын
Beautiful 😍
@DeepakGupta-uv1oh4 жыл бұрын
Super method 🎊
@ikhsanmnoor85894 жыл бұрын
Proofing much more fun doesnt?
@abd-elrahmanmohamed98394 жыл бұрын
Woooow
@ferashamdan42525 ай бұрын
❤
@chandranisahanone Жыл бұрын
Euler🗿🗿🗿
@louisromao7183 Жыл бұрын
Be careful. The integral you ended with is different than the integral you started with.