Regression and Ax = b: Over- and under-determined systems

  Рет қаралды 9,036

Nathan Kutz

Nathan Kutz

Күн бұрын

Пікірлер
@HassanKhan-cs8ho
@HassanKhan-cs8ho 4 жыл бұрын
I ABSOLUTELY LOVE THE WORK YOU AND STEVEN BRUNTON HAVE DONE!!!! YOU ARE LEGENDS!!!! LOVE YOU!
@ad2181
@ad2181 4 жыл бұрын
He's setting a new standard for teaching Linear Algebra. He's GQ dress with the suite too. Enjoy the lectures they are Golden.
@gaelparfait4269
@gaelparfait4269 4 жыл бұрын
Great stuff thanks a million professor Kutz. It is precise and concise, I can't imagine the number of souls you guys are saving out there
@tinkeringengr
@tinkeringengr 4 жыл бұрын
This channel is great! keep up the great work, fundamentally changing civilization.
@djtovys
@djtovys 4 жыл бұрын
First comment. I admired the Dr. Kutz. And this video is grateful. Thanks Dr. Kutz
@anilrao6
@anilrao6 4 жыл бұрын
thank you Prof. Nathan Kutz
@dmitriiandreev8320
@dmitriiandreev8320 4 жыл бұрын
The best quality education
@CTSSHAH
@CTSSHAH Жыл бұрын
thank you for a wonderful book and video series
@anothermlstudent1458
@anothermlstudent1458 3 жыл бұрын
Thank you very much Nathan for the great video! When in 3:37 you say "you cannot satisfy Ax = b, is overdetermined", if I imagine the case where some rows may be duplicated in my data or for some reason some rows happen to be a linear combination of the others I may get a "tall" matrix (or and overdetermined system) that may have a solution/s. In short, following the same definition of overdetermined as in en.wikipedia.org/wiki/Overdetermined_system, you can have an overdetermined system with a solution. Do you use a different definition of under- overdetermined? (for instance, only taking into consideration the number of equations after reduction?) or you are just focusing on what you assume to be the most common case in a data matrix (to not present duplicated or dependent rows? Thank you for the clarification =)
@azoj777
@azoj777 2 жыл бұрын
no, you are correct - in an overdetermined system you'll only have a solution if b is in the span of A, and since the column vectors of A belong to R^n and n is significantly greater than m, the col vectors of A only span some subspace of R^n (a small subspace given that n is significantly greater than m). b is also a vector in R^n but it's likely that b is not in the subspace that A spans, so it's likely we don't have a solution.
@anilcelik16
@anilcelik16 4 жыл бұрын
Thank you for the effort
@ОльгаКудрявцева-ы3р
@ОльгаКудрявцева-ы3р 2 жыл бұрын
how do you do that?
@VIVEKPANDEYIITB
@VIVEKPANDEYIITB 3 жыл бұрын
How does solver determine which variables are useful in case of l1 norm? Also, how do we prove theoretically that l1 promotes sparsity? Anyone?
@TheRsmits
@TheRsmits 2 ай бұрын
Watching this again and realized the problem of over-fitting is analogous to the 'no true Scotsman' fallacy in philosophy where someone has given themselves so many parameters that they can fit any data.
@palzhanov
@palzhanov 2 жыл бұрын
👍
@HD-qq3bn
@HD-qq3bn 4 жыл бұрын
Respect you
@ErnestoMendoza-oo1fq
@ErnestoMendoza-oo1fq Жыл бұрын
The MathLab and Python solutions for the undetermined case, panel (D) do not match.
@mohammadaminmousavi5011
@mohammadaminmousavi5011 3 жыл бұрын
GREATTT!
Optimization as the cornerstone of regression
29:11
Nathan Kutz
Рет қаралды 5 М.
The Pareto front and Lex Parsimoniae
24:23
Nathan Kutz
Рет қаралды 6 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Lecture: The Singular Value Decomposition (SVD)
44:36
AMATH 301
Рет қаралды 232 М.
Feature Selection and Data Mining
23:42
Nathan Kutz
Рет қаралды 4,8 М.
Applied Linear Algebra:  Solvability & Regularization
48:26
Nathan Kutz
Рет қаралды 4,8 М.
Unsupervised Learning:  Mixture Models
21:45
Nathan Kutz
Рет қаралды 6 М.
Lasso regression - explained
18:35
TileStats
Рет қаралды 20 М.
Underdetermined systems: more variables than equations
9:31
Michael King
Рет қаралды 11 М.
Linear Systems of Equations, Least Squares Regression, Pseudoinverse
11:53
Multi-Layer Networks and Activation Functions
27:17
Nathan Kutz
Рет қаралды 4,4 М.
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН