Time Series Talk : Autoregressive Model

  Рет қаралды 337,841

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 202
@madeehasayyed9507
@madeehasayyed9507 3 жыл бұрын
Its for the first time that I have seen someone explaining econometrics in such a simple but yet in a comprehensive manner. You are a life saver.
@victorgaluppo5233
@victorgaluppo5233 5 жыл бұрын
Ritvik, you really have a gift for teaching complex topics in such simple terms. Seriously, I'd been trying to find an understandable lesson, and yours was godsent! Thank you very much for taking the time to help us!
@taghreedalghamdi6812
@taghreedalghamdi6812 5 жыл бұрын
I'm doing research and it's involve with some of the concepts you mentioned, I've never been felt how easy to understand these concepts till I saw your video!! Big Thanks to you ,, please keep posting more videos for the sack of science research and education.
@AbdullahAfzalRaja
@AbdullahAfzalRaja 5 жыл бұрын
is your research by any chance is on ARx model? doing the same :p
@thefuturAI
@thefuturAI 4 жыл бұрын
So well explained again - you are brilliant at explaining the concepts in a way that's easy to understand - THANK YOU!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@user-rh3ie8no9n
@user-rh3ie8no9n 4 жыл бұрын
you’re a lifesaver!!! the amount of light bulb moments I have in your videos is insane
@Zeel_BTS
@Zeel_BTS Жыл бұрын
I am absolutely amazed. Thank you so much for this
@vigneshrb1626
@vigneshrb1626 2 жыл бұрын
Gem of a series for anyone studying about time series!!
@rjsmotel
@rjsmotel Жыл бұрын
It is incredible how well you teach. These videos are fantastic, thank you
@ritvikmath
@ritvikmath Жыл бұрын
Glad you like them!
@lelewang6661
@lelewang6661 3 жыл бұрын
this is the easiest but best video I saw to understand AR Model! thank you very very much!
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad it helped!
@hueyfreeman9504
@hueyfreeman9504 Жыл бұрын
Oh my Lord!!!! This is amazing! They could pay people money from here to the moon and they wouldn't be able to explain this concept so concisely. Best explanation of AR Model I've heard. Thank you so so much!!
@MrManumuna
@MrManumuna 2 жыл бұрын
Bro, this was easily the best explanation I've ever heard so far. Thanks a lot!
@yerseitbalkhibayev9438
@yerseitbalkhibayev9438 2 жыл бұрын
It's amazingly simple and clear explanation of such a elusive topic! Thank you very much
@baskaranthangarajan4443
@baskaranthangarajan4443 4 жыл бұрын
Really a gentle but a very powerful and intriguing intro to the AR model. Thank you.
@ritukamnnit
@ritukamnnit 5 жыл бұрын
Thankyou so much, This video was of great help. one of the best material explaining time series forecasting. :)
@arungautam3454
@arungautam3454 Жыл бұрын
Brilliant explanation. So easily explained this confusing topic.
@syedbaryalay5849
@syedbaryalay5849 2 жыл бұрын
came here for copper, found gold instead. You doing a great job with these video my friend. thanks
@playkids5
@playkids5 Жыл бұрын
Taking your videos help in 2023🎉❤thak you ritvik or ritik sir
@apoorvmalik6122
@apoorvmalik6122 4 жыл бұрын
This is so helpful!! You cleared all my doubts. Thank you very much for making this.
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@VanessaHenderson-j2i
@VanessaHenderson-j2i 5 ай бұрын
Wow! You are a principality, with due respect this is mind blowing
@robertopizziol7459
@robertopizziol7459 4 жыл бұрын
2020 hit us so hard no statistical model could hold. I bet even the milk demand is a total mess now!
@anthonyng3705
@anthonyng3705 4 жыл бұрын
Most error in prediction models answers only how many % chance an event happen. BUT THEY NEVER ANSWER YOU the magnitude WHAT IF THE SMALL CHANCE HAPPEN. Some events like 2020 here rarely happened, but when breaking out, its magnitude swipe out everything. HAHA
@sassmos008
@sassmos008 4 жыл бұрын
Although some model may not hold, this will help us factoring in the effects of such events when we deduce other similar models.
@olivermohr417
@olivermohr417 3 жыл бұрын
@@anthonyng3705 That's what you call Excpected Shortfall in finance. Expected loss given a tail event
@mayurkagathara3601
@mayurkagathara3601 3 жыл бұрын
kzbin.info/www/bejne/pJ_aoqeQnr6ArrM . Case study on Amul during covid. Every hard hit comes with momentum that can destroy us or push hard to be the best of all time.
@zacharyadams3772
@zacharyadams3772 2 жыл бұрын
I’m a data scientist who worked through the pandemic in a critical infrastructure industry. On the other side now, can confirm, standard methods rendered results like 1+1=purple.
@TheExceptionalState
@TheExceptionalState 4 жыл бұрын
Thank you so much for your clear and well put together videos
@ritvikmath
@ritvikmath 4 жыл бұрын
Not a problem :)
@szymonk.7237
@szymonk.7237 4 жыл бұрын
Thank you for this series ! ❤️❤️❤️
@ritvikmath
@ritvikmath 4 жыл бұрын
You are so welcome!
@graceegan3005
@graceegan3005 5 жыл бұрын
This video is amazing. Thankyou for explaining this so well
@christianbauer3417
@christianbauer3417 4 жыл бұрын
Amazing easy explanation my friend! It's a pity that you didn't explain the beta coefficients in detail, but I understood the concept very well :-) Thank you for your help.
@ngotrieulong6935
@ngotrieulong6935 5 жыл бұрын
So great sir, hope to see more video about time series from you, it is really benefits for me
@gooeyyeoog8535
@gooeyyeoog8535 5 ай бұрын
Great video man ! Big love from Saudi
@cameronhashemi569
@cameronhashemi569 2 ай бұрын
Hi Ritvik, thank you for these viedos. It seems like this one should be the third one in the time series playlist, after ACF and PACF are introduced, but before the coding demo which already references AR.
@asadkhanbb
@asadkhanbb 5 жыл бұрын
You made my intuition clear. Thank you
@Harikrishnanam
@Harikrishnanam 3 жыл бұрын
Thanks a lot. You're undoubtedly a genius.
@janis.5733
@janis.5733 5 ай бұрын
Thank you so much 😊
@WahranRai
@WahranRai 4 жыл бұрын
before talking about AR model, the time series must be STATIONARY ! AR and MA models are based on stationary time series
@user-cc8kb
@user-cc8kb 3 жыл бұрын
Very nice explanation. Thank you a lot!
@hanadibinmujalli965
@hanadibinmujalli965 2 жыл бұрын
Thank you so much, brilliant!!
@christosmantas4308
@christosmantas4308 5 жыл бұрын
Thank you, very nice explanation. Q: How do you draw the "error" lines (red dotted) in the ACF plot? What is this threshold for significance?
@leonfan1394
@leonfan1394 3 жыл бұрын
You are a great teacher
@mohamedgaal5340
@mohamedgaal5340 3 жыл бұрын
Hi! The milk graph shows seasonality. I'm wondering how could you use AR model on a nonstationary time series. Thank you.
@KIKI-NJ
@KIKI-NJ 3 жыл бұрын
I have the same question
@SuvodeepPyne
@SuvodeepPyne 3 жыл бұрын
That's what ARIMA model is for. He has a video on that.
@shadrackdarku8613
@shadrackdarku8613 3 жыл бұрын
this stationary time series the mean is fairly constant
@anelesiyotula5372
@anelesiyotula5372 2 жыл бұрын
Hello. If there is seanality you could just do a second difference to remove it.
@Coopy55
@Coopy55 5 жыл бұрын
Well explained. Thank you very much you may have saved my assignment haha
@Rodrigo870
@Rodrigo870 4 жыл бұрын
Great explanation! Thank you very much!
@manaoharsam4211
@manaoharsam4211 3 жыл бұрын
Very good, well explained.
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad it was helpful!
@Alex-sy4gg
@Alex-sy4gg 10 ай бұрын
well. correct me if im wrong. i dont think AR model can skip lags tho, meaning it needs to start from t-1 and follows in time order i believe
@sorooshtoosi
@sorooshtoosi 5 жыл бұрын
Thank you very much! it is a very well explained and useful video!
@jairoalves8083
@jairoalves8083 5 жыл бұрын
Holy man, you are a natural!!! Thanks a lot!!!!
@terryliu3635
@terryliu3635 4 жыл бұрын
Great video! Thank you very much!
@mohammedghouse235
@mohammedghouse235 3 жыл бұрын
The PACF appears similar to Tornado plot in uncertainty analysis.
@sameer123wipro
@sameer123wipro 4 жыл бұрын
Brilliantly explained
@pablouribe1522
@pablouribe1522 2 жыл бұрын
Excellent video!
@Juan-Hdez
@Juan-Hdez 9 ай бұрын
Very useful. Thank you!
@VKRealsta
@VKRealsta 2 жыл бұрын
Really such a wonderful and understandable vedio this is.
@kisholoymukherjee
@kisholoymukherjee 2 жыл бұрын
great video as always
@brandre
@brandre 5 жыл бұрын
Thanks for this very clear explanation!!!
@statisticianclub
@statisticianclub 4 жыл бұрын
Great explanation
@Silver1980love
@Silver1980love 11 ай бұрын
Great video, keep going.
@libo8318
@libo8318 Жыл бұрын
Wonderful explanation!!!!!! do you have video explaining the differences between AR-MA-ARMA-ARIMA?
@AviadAvraham
@AviadAvraham Жыл бұрын
amazingly simple explanation, thanks! My trouble so far is understanding what the beta coefficient(0) or intercept is. can you explain it briefly please?
@BBB_025
@BBB_025 4 жыл бұрын
for the AR model you made for m(t), would this be an AR(4) model because there are 4 lags, or would it be an AR(12) model because the largest lag is 12 periods before the current time t?
@phut7755
@phut7755 Жыл бұрын
I think in this case, the model would be considered an AR(12) model. Even though there are only 4 significant lags (1, 2, 3, and 12), the largest lag is 12 periods before the current time t. When specifying an autoregressive model, the order of the model is determined by the maximum lag included in the model, which in this case is 12. The AR(12) model would include all lags up to the 12th lag, with some coefficients possibly being zero or near-zero for the insignificant lags.
@108987
@108987 8 ай бұрын
@@phut7755I would beg to differ. We denote an autoregressive model as AR(p), where p denotes the amount of lagged variables included in the model, which in the case of the example from this video is 4. Hence it is an AR(4) model.
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
Seems like AR is for capturing seasonality.
@kosprov69
@kosprov69 Жыл бұрын
@ritvikmath In the video for stationarity, you mentioned that we need stationarity to apply AR/MA models to the time series. Furthermore, for a time series to be stationary, it had to have the following criteria : 1. The mean / expected value remained constant 2. The variance remained constant 3. There was no seasonality Yet in this video, we are using an AR model to solve a problem which is completely seasonal. This felt contradictory to your stationarity video.
@ericmcalley6097
@ericmcalley6097 Жыл бұрын
Excellent video. Clearly explained and loved the crayola markers. For this, would you use Level data or first differences? Thank you
@alecvan7143
@alecvan7143 4 жыл бұрын
great video!
@ritvikmath
@ritvikmath 4 жыл бұрын
Thanks!
@leg9004
@leg9004 4 жыл бұрын
thanks a lot for your work
@ritvikmath
@ritvikmath 4 жыл бұрын
You are welcome!
@rmarinov5770
@rmarinov5770 5 жыл бұрын
My R. Marinov Model [™] AND AR Model.TVM!
@bonadio60
@bonadio60 2 жыл бұрын
Hi, great videos! I am following the series and one thing that is not clear is that this milk chart seems to have a seasonality. My question is, if you can model it with just an AR model why do I need the "s"arima model? I will answer my own question, I think I understood. The SARIMA is just applying "AR" "I" and "MA" over the seasonal lag. So for example if I have an yearly 12months seasonal data using just AR(12) would calculate the regression over all steps/months 1,2,3,4,..12 but if I have S"AR"(12) it will just calculate the regression on the 12th lag
@luigifiori4812
@luigifiori4812 5 жыл бұрын
great job sir!
@yichern4351
@yichern4351 3 жыл бұрын
Hi sir, seeking for clarification here, why is it that AR Models can only be applied to stationary time series? This one here isn't stationary due to seasonality, but it seams like the seasonality helps in the prediction, due to the 12th month adding an additional month that helps predict the current month?
@lazlopaul7764
@lazlopaul7764 4 жыл бұрын
Thanks this is so informative!
@tiagocantalice9767
@tiagocantalice9767 4 жыл бұрын
Thanks for the lesson. Help me a lot. ;)
@fyaa23
@fyaa23 5 жыл бұрын
A nice introduction. Maybe you could use the example data and show the prediction curve to get a sense of the outcome.
@JuliusSommer
@JuliusSommer 5 жыл бұрын
I really liked the video, maybe next time you could finish the example with some actual numbers
@whoami6821
@whoami6821 5 жыл бұрын
please make more time series video! It really helps! and there is no much time series video out there at all
@bermchasin
@bermchasin 4 жыл бұрын
me also like much time series video. Hope make more video for knowledge.
@azeturkmen
@azeturkmen 4 жыл бұрын
thanks a lot, sir! helped me a lot, to understand concept
@ParneetKaur-tq6qy
@ParneetKaur-tq6qy 4 жыл бұрын
really very helpful
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad you think so!
@MrTony337
@MrTony337 3 жыл бұрын
In this example the data is seasonal, does this mean we need to make the data stationary before we use the PACF plot?
@arunpalaniappan4749
@arunpalaniappan4749 3 жыл бұрын
Hey Ritvik! I had a doubt, what is the difference between a simple exponential smoothing and an AR model? Simple exponential smoothing predicts the next value as a linear function of the previous values, but weighted. AR Model also predicts the next value as a function of the previous ones. So is exponential smoothing a subset of AR model or how does it go?
@marvinalbert
@marvinalbert 2 жыл бұрын
In exponential smoothing, the used weights follow an exponential model. In AR, by contrast, there's no constraint on these weights. So as you suggest, exponential smoothing in this context could be a special case of AR.
@drmearajuddin2334
@drmearajuddin2334 4 жыл бұрын
What an amazing explanation sir.. Great sir.. Sir plz make video on cointegration especially Johensen cointegration.... What is difference between VAR AND AR.. PLZZZZ HOPE TO SEE YOUR REPLY
@swiftblade168
@swiftblade168 2 жыл бұрын
Superb
@michaelelkin9542
@michaelelkin9542 4 жыл бұрын
Later videos say that AR cannot be used on a seasonal model which this clearly is. But the model is based on the seasonality. So can it be used or not?
@michaelangelovideos
@michaelangelovideos 5 жыл бұрын
This is amazing, thank you.
@pawankulkarni7634
@pawankulkarni7634 4 жыл бұрын
yes, Video is superb. How can we select order of AR model from PACF and same for MA model from ACF.
@rishabstudies2822
@rishabstudies2822 26 күн бұрын
Great video! Just one thing I didn't completely understand. when trying to find the model of Mt, where do the beta values come from? Thanks! (timestamp: 7:18)
@chethan93
@chethan93 5 жыл бұрын
Very good video!!
@L.-..
@L.-.. 4 жыл бұрын
For this AR model what will be the p value? That is, AR(p) -> AR(4)? Is that correct?
@zhixu1925
@zhixu1925 4 жыл бұрын
Great Video! My questions are: 1) In your first video about ACF and PACF, as long as there is a time series, i could plot ACF and PACF regardless on whether its stationary or not by my understanding. In this episode, the time series need to be stationary in order to implement AR model. Why is that? 2) In my case to analyze stock price, the first step is to plot ACF and PACF. Do I need to make stock pice stationary in order to perform ACF and PACF? Thank you !
@zamiphilicknnox6720
@zamiphilicknnox6720 4 жыл бұрын
I maybe wrong but i think he was just checking the time series data for stationarity. Becuz if its stationary we go for OLS and if not stationary we try and apply ARDL model to the time series data.
@hahahat47
@hahahat47 4 жыл бұрын
this is so nice if you try to learn math without confusion
@DauphinetB
@DauphinetB Жыл бұрын
I'm having a problem with the definition of order of AR, MA and ARMA time series forecasting processes. Imagine we have a time series with data from January to December, and we're in July, trying to predict August. When we say AR(2), are we using lags relating to July and June, or can those two months be any month between January and June?
@김주영-d1c
@김주영-d1c 4 жыл бұрын
Thank you for the video. From the video, I have two questions in mind, 1. Is AR model built from PACF? 2. Can we also build AR model from ACF? Hope to hear some from you!
@statisticslearning
@statisticslearning 4 жыл бұрын
AR model is identified or built by PACF plot And MA model is identified or built by ACF plot... Always remember
@ben6
@ben6 4 жыл бұрын
missed out on naming it, Time Series²
@ritvikmath
@ritvikmath 4 жыл бұрын
ooh, you're right
@gravimotion_Coding
@gravimotion_Coding 4 жыл бұрын
How do you calculate the red bands, so that you can check which lagged value has an impact on the model? thx for answer :)
@Movewithkhu
@Movewithkhu 2 жыл бұрын
Based on past values of something predict something
@VictorOrdu
@VictorOrdu 2 жыл бұрын
Where have you been all my life?
@chuckgrigsby9664
@chuckgrigsby9664 Жыл бұрын
It would seem to me that from your discussion of the use of the PACF to identify the important contributors that you have missed the lags at t-24 and at t-36 unless your analysis makes the assumption that the quantity has a periodicity of one year. But you didn't discuss periodicity in your approach to the PACF.
@RachitVerma-f2k
@RachitVerma-f2k Жыл бұрын
How do we estimate the variance of the white noise from the given data?
@yasminedaly7648
@yasminedaly7648 Ай бұрын
But aren't you supposed to stop at the first insignificant lag, in this example 2 lags were significant then lag 3 was not so a good model should be AR(2) and not AR(4) right ?
@prameelagorinta4626
@prameelagorinta4626 3 жыл бұрын
Hello sir, Won't the t-2, t-4 terms get negative sign, as they are in the negative direction?
@TheOrionMusicNetwork
@TheOrionMusicNetwork 3 жыл бұрын
The coefficient can be a negative value (e.g. b2 = -0.6). No need to use negative signs
@dineafkir5184
@dineafkir5184 4 жыл бұрын
Much appreciated :-)
@RoyFokker93
@RoyFokker93 3 жыл бұрын
This helped me a lot. Do you have any recommended bibliography?
@zhimoli
@zhimoli 5 жыл бұрын
Thank you!
@Mewgu_studio
@Mewgu_studio Жыл бұрын
If AR model can only be applied on stationary data set, how come the example used in this video is clearly non-stationary? The dataset example has yearly seasonality, correct?
@shobhitsrivastava9112
@shobhitsrivastava9112 Жыл бұрын
What will be the values of Beta0, Beta1 and so on? Is it same as the value of PACF?
@gowthamhuliyar
@gowthamhuliyar 5 жыл бұрын
Thanks
@stellanjiru3993
@stellanjiru3993 5 жыл бұрын
Thanks!
AR Model Code Example : Time Series Talk
10:08
ritvikmath
Рет қаралды 59 М.
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Players vs Pitch 🤯
00:26
LE FOOT EN VIDÉO
Рет қаралды 137 МЛН
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 6 МЛН
كم بصير عمركم عام ٢٠٢٥😍 #shorts #hasanandnour
00:27
hasan and nour shorts
Рет қаралды 11 МЛН
THESE STOCKS MISS EARNINGS! Should We Be Concerned?
21:01
Arete Trading
Рет қаралды 4,4 М.
Time Series Talk : Moving Average Model
7:10
ritvikmath
Рет қаралды 196 М.
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 292 М.
What are Autoregressive (AR) Models
5:01
Aric LaBarr
Рет қаралды 129 М.
8. Time Series Analysis I
1:16:19
MIT OpenCourseWare
Рет қаралды 404 М.
Time Series Talk : ARMA Model
7:12
ritvikmath
Рет қаралды 171 М.
Unit Roots : Time Series Talk
13:53
ritvikmath
Рет қаралды 154 М.
Autoregressive Model For Time Series Analysis | Python Tutorial
13:46
What are Moving Average (MA) Models
5:01
Aric LaBarr
Рет қаралды 71 М.
Time Series Forecasting Theory | AR, MA, ARMA, ARIMA | Data Science
53:14
Analytics University
Рет қаралды 768 М.