solve differential with laplace transform, sect 7.5#3

  Рет қаралды 247,246

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 94
@johncedricksantos4419
@johncedricksantos4419 5 жыл бұрын
So many of us engineering student is depending on videos like this so thank you so much
@blackpenredpen
@blackpenredpen 5 жыл бұрын
: )
@aphelmusonda5253
@aphelmusonda5253 2 жыл бұрын
true
@ayashmuhammadhu1
@ayashmuhammadhu1 2 жыл бұрын
@@blackpenredpen yes true
@Bushido100-ko8es
@Bushido100-ko8es 7 ай бұрын
@@ayashmuhammadhu1 yes true to your yes true
@letsgetiton99
@letsgetiton99 6 жыл бұрын
this kind of videos MUST be paid!! im grateful its very free and bprp is soooo noice
@blackpenredpen
@blackpenredpen 6 жыл бұрын
leopardi the poodle NoName I am very glad to hear! Best of luck on your finals (if you are taking any soon)
@letsgetiton99
@letsgetiton99 6 жыл бұрын
@@blackpenredpen i actually do next week☺
@blackpenredpen
@blackpenredpen 6 жыл бұрын
leopardi the poodle NoName Yup, I guessed it right! Best of luck and let me know how it goes!
@dp6638
@dp6638 6 жыл бұрын
4:48, you can also use the partial fraction decomposition to make it easy!
@wvadam
@wvadam 5 жыл бұрын
Thank you for pointing out the S is not a 5, I make this mistake all the time! these are the tips students need
@varshathaya2515
@varshathaya2515 Жыл бұрын
Great sir👏
@arts5852
@arts5852 4 жыл бұрын
The best channel about math. Thank you for your videos. It’s really helpful
@akashdosanjh4752
@akashdosanjh4752 3 жыл бұрын
great video straight to the point. Making calculus more fun and learnable
@ndifor_kenny
@ndifor_kenny 2 жыл бұрын
Thank you so much. I used this video in preparation for a national exam and a quetstion similar to this came up. THANKS🙏
@mangomango5660
@mangomango5660 Жыл бұрын
You are a true saviour
@K-Von
@K-Von 6 жыл бұрын
Your videos are so useful. Congrats for you channel!
@bakangsbakho8852
@bakangsbakho8852 6 жыл бұрын
why would someone dislike this video ?
@lovemoremoses3048
@lovemoremoses3048 4 жыл бұрын
You are just a blessing. Period #
@furkanturkal8414
@furkanturkal8414 5 жыл бұрын
Thank you for your clean-explanation.
@aphelmusonda5253
@aphelmusonda5253 2 жыл бұрын
you're really helping us lot, we thenk you prof.
@mohamedabdifatahmohamed7480
@mohamedabdifatahmohamed7480 2 жыл бұрын
Thanks good explanation
@KazACWizard
@KazACWizard 2 жыл бұрын
im gonna use this method for my high school de courses. so much better.
@simonlinden8167
@simonlinden8167 6 жыл бұрын
Great videos. but on this you lost me on the last inverse transform ( blue, right hand side). I've never seen this trick of splitting the squared into a 1+1. If someone could explain this or point me in the right direction it would be appreciated.
@GhostyOcean
@GhostyOcean 6 жыл бұрын
Laplace{t^n}=n!/(s^[n+1]), so we can deduce that 1/s^2 is t^1.
@nilsoncampos8336
@nilsoncampos8336 2 жыл бұрын
Great video! I have a question for you: Is there another way to do inverse of Laplace transform? I mean, any formula, theorem... And so on.
@OldSJF
@OldSJF Жыл бұрын
Really good video!
@beinerthchitivamachado9892
@beinerthchitivamachado9892 6 жыл бұрын
God Bless You Bro, Helpful AF!
@MilesComstock
@MilesComstock Жыл бұрын
Perfect example thank you
@harleyspeedthrust4013
@harleyspeedthrust4013 3 жыл бұрын
laplace transform is straight black magic
@carultch
@carultch Жыл бұрын
Integration by parts is Ultraviolet Voodoo
@ricardooow
@ricardooow 7 жыл бұрын
Is this possible without an initial condition? If so can you show it, I'm trying it myself but I get stuck when having to inverse the Laplace transform
@carultch
@carultch Жыл бұрын
You would put in initial conditions as variables. Like letting y(0) equal w, and letting y'(0)=v. Then, you can pick any initial conditions to see the solution in action.
@DrRockyify
@DrRockyify 6 жыл бұрын
in my class, the teacher taught us to assume that y=e^(rx) and solve a quadratic equation. If the r doesn't have any real roots, just use cosine and sine.
@dp6638
@dp6638 6 жыл бұрын
4:48, you can also use the partial fraction decomposition!
@GhostyOcean
@GhostyOcean 6 жыл бұрын
That's one way of solving this kind of diff EQ. There is usually more than one way to solve problems in math, so your way isn't wrong per say. The question could ask you to solve the equation using the Laplace transformation, so you'd need to know how to do this as well.
@carultch
@carultch Жыл бұрын
The Laplace transform is particularly useful when you DON'T have the equation equal to zero, but instead there is a forcing function of t, on the other side of the equals sign. The assume y=e^(r*t), and solve a quadratic equation works best for the homogeneous cases. He's using this as an example to demonstrate the concept of solving the same problem via a Laplace transform.
@ShuklaMathsAcademy
@ShuklaMathsAcademy 5 жыл бұрын
Good.
@abigailabigail5727
@abigailabigail5727 6 жыл бұрын
Omg thank you 😭🙈
@chinyereeorji3167
@chinyereeorji3167 5 жыл бұрын
abigail abigail he's good
@abhijitbhat2760
@abhijitbhat2760 7 жыл бұрын
i like ur vdos
@kavkaz2005ify
@kavkaz2005ify Жыл бұрын
A real G ! God bless
@BEbouzywouzyBE
@BEbouzywouzyBE 7 жыл бұрын
Hey, I really appreciate your videos. They inspire me a lot ! I also have a request, can you explain the integral of (e^x*cosx) ? It's a partial integral which I don't know how to solve.
@ralfbodemann1542
@ralfbodemann1542 7 жыл бұрын
I would use the identity cosx= 0.5(e^îx+e^-ix). Then you only have to integrate e-functions.
@blackpenredpen
@blackpenredpen 7 жыл бұрын
BouzyWouzy I did the integral of e^xsinx here kzbin.info/www/bejne/aHqQkIaMbciqqdk and it should help u with ur problem
@BEbouzywouzyBE
@BEbouzywouzyBE 7 жыл бұрын
Ohh thanks a lot !! It will definitely help me with studying. Like all of your videos, actually :)
@ElifArslan-l9g
@ElifArslan-l9g 2 жыл бұрын
thank you
@evwerenisaacoghenenyerhovw232
@evwerenisaacoghenenyerhovw232 3 ай бұрын
Sir please I need videos on Laplace transform from the scratch.m pls help me
@karinarodriguez6784
@karinarodriguez6784 5 жыл бұрын
Hi great vid, I just have one question regarding the solution, why do you add 3te^3t instead of subtracting it?
@beno7969
@beno7969 5 жыл бұрын
Bottom left of the board, he factored the negative out so he could manipulate the insides of the function. When he took the inverse laplace, he distributed the negative again, making the 3 positive.
@jonwright9452
@jonwright9452 7 жыл бұрын
would it be possible to solve without a boundary condition using laplace ?
@GhostyOcean
@GhostyOcean 6 жыл бұрын
This would be an initial value problem, and as far as I'm aware the Laplace transformation only works for IVPs and not BVPs.
@harleyspeedthrust4013
@harleyspeedthrust4013 3 жыл бұрын
@@GhostyOcean fax u cant solve w laplace w out initial vals
@carultch
@carultch Жыл бұрын
The most you could do, is use placeholder constants, like defining u = y(0), and v = y'(0). Then, you solve it in terms of u and v as placeholders for these numbers. At the end of the solution of a 2nd order system, two of the numbers will depend on u and v, and the remaining terms (if they exist) will have their own coefficients that are independent of u and v. The terms that depend on u and v, can ultimately have their coefficients replaced with arbitrary coefficients. As an example, consider: y" + 6*y' + 9*y = 1 - e^(-t) let u = y(0) and v = y'(0) Take the Laplace transform: s^2*Y(s) - v - s*u + 6*s*Y(s) - 6*u + 9*Y(s) = 1/s - 1/(s + 1) Shuffle initial conditions to the right, and factor the left: (s^2 + 6*s + 9)*Y(s) = 1/s - 1/(s + 1) + (s + 6)*u + v Isolate Y(s), and factor: Y(s) = (1/s - 1/(s + 1) + (s + 6)*u + v)/(s + 3)^2 Shuffle denominators below, expand and gather: Y(s) = (s^3*u + (7*u + v)*s^2 + (6*u + v)*s + 1)/(s*(s+1)*(s+3)^2) Partial fractions: Y(s) = A/s + B/(s + 1) + C/(s+3)^2 + D/(s+3) A = 1/9, B = -1/4, C = 3*u + v + 1/6, D =1/72*(450*u + 54*v + 37) Since C and D both are functions of u and v, we can leave them as unspecified constants, and get the general solution: Y(s) = 1/9/s - 1/4/(s+1) + C/(s + 3)^2 + D/(s + 3) Inverse Laplace: y(t) = 1/9 - 1/4*e^(-t) + C*t*e^(-3*t) + D*e^(-3*t)
@abbaskhan6956
@abbaskhan6956 4 жыл бұрын
Great. I have also a channel of mathematics.
@abhayr2070
@abhayr2070 4 жыл бұрын
Is it possible to do this without initial condition?
@carultch
@carultch Жыл бұрын
You can make up placeholder initial conditions. For instance, let y(0) = u, and let y'(0) = v. Given: y" + 6*y' + 9*y = 0, and the above placeholder initial conditions. Let Y(s) = £{y(t)} £{y"(t)} = s^2*Y(s) - v - s*u £{y'(t)} = s*Y(s) - u Compile, expand, gather, and shuffle initial conditions to the right:: (s^2 + 6*s + 9)*Y(s) = u*s + v + 6*u Isolate Y(s) and factor: Y(s) = (u*s + v + 6*u)/(s + 3)^2 Arrange the numerator so one part looks like (s +3)/(s + 3)^2: u*s + v + 6*u = u*(s + 3) - 3*u + v + 6*u = u*(s + 3) + v + 3*u Thus: Y(s) = u/(s + 3) + (v + 3*u)/(s + 3)^2 Take inverse Laplace: y(t) = u*e^(-3*t) + (v + 3*u)*t *e^(-3*t) If you just want the general solution, replace u and (v + 3*u) with your two arbitrary constants, such that y(t) = A*e^(-3*t) + B*t*e^(-3*t). If there were a third term due to starting with a non-homogeneous equation, it would have a coefficient that is independent of the initial conditions.
@silvally4992
@silvally4992 3 жыл бұрын
Fourier Series please
@lexluthorjf
@lexluthorjf 2 жыл бұрын
Thank you for that. But I have a question: how to solve an ODE by Laplace when y(k) = n and y'(k) = m, for k =/= 0?
@carultch
@carultch Жыл бұрын
To solve an equation with non-initial conditions instead of initial conditions, you cannot do it directly with the Laplace transform. The Laplace transform only works with initial conditions directly. However, there are other methods we could use. One method is to assign arbitrary initial conditions at t=0 as placeholders, and then solve for them later to match the given information, such as y(0) = u and y'(0) = v. Another method with the way you've given the information, is to simply assign capital T, such that capital T is zero when t=k. This means that T = t - k. Then our delayed start conditions, end up being initial conditions after all, and we can proceed with solving the problem in the capital T domain. I'll use capital S to reflect the difference. And then undo the shift, to get back to the little t domain. For this example: y" + 6*y' + 9*y = 0 y(k) = n, y'(k) = m S^2*Y(S) - S*n - m + 6*S*Y(S) - 6*n + 9*Y(S) = 0 Shuffle initial conditions to the right: (S^2 + 6*S + 9)*Y(S) = S*n + 6*n + m Isolate Y(S) and factor the bottom: Y(S) = (S*n + 6*n + m)/(S + 3)^2 Partial fractions: Y(S) = n/(S+3) + (3*n + m)/(S + 3)^2 Solution in capital T world: y(T) = n*e^(-3*T) + (3*n + m)*T*e^(-3*T) Recall that T = t - k, and replace accordingly: y(T) = n*e^(-3*(t - k)) + (3*n + m)*(t - k)*e^(-3*(t - k))
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
Look at the diifrence! Its only the square!
@jsingh8192
@jsingh8192 4 жыл бұрын
Thx very very very much
@АйгеримЕрбол-э4к
@АйгеримЕрбол-э4к 4 жыл бұрын
Thanks buddy. Why do you need to hold this huge black ball
@alexismisselyn3916
@alexismisselyn3916 4 жыл бұрын
if he drops it there's an earthquake It's a microphone.
@g0dsm4ck100
@g0dsm4ck100 7 жыл бұрын
I love you
@blackpenredpen
@blackpenredpen 7 жыл бұрын
thanks!
@stephent1322
@stephent1322 7 жыл бұрын
lmao i was just gonna write this. i also love him. hey its 2017 after all !
@Jay-rg5mt
@Jay-rg5mt 2 жыл бұрын
What a Chad this guy is
@benbaribault424
@benbaribault424 4 жыл бұрын
i would get so confused trying to write with two different colored pens in the same hand
@chrisvals62
@chrisvals62 7 жыл бұрын
Brilliant!
@dreamsboy2036
@dreamsboy2036 4 жыл бұрын
in Our Engineering Compus Y(0)= 1 And Here Y(0)= -1 Who is Wrong Our Professor or Our Youmather😅😅😅
@blackpenredpen
@blackpenredpen 4 жыл бұрын
This is a very common example lol.
@juniorjay001
@juniorjay001 4 жыл бұрын
lost me at 5:30
@ralphlaurenzsy1014
@ralphlaurenzsy1014 6 жыл бұрын
If y" is equal to s^2 y(s) what now is the equal of 2x"? Is it 2s^2 y(s) thank you in advance
@carultch
@carultch Жыл бұрын
If there are multiple dependent variables, x, and y, then Y(s) and X(s) would be two separate Laplace transforms that don't necessarily have anything to do with one another, until a constraint is established. An example of when you would see this, is in systems of diffEq's. Consider the following system, with both x(0) = 0, and y(0) = 0. x'(t) = -6*x(t) + 4*y(t) - 2 y'(t) = -x(t) - 2*y(t) + 5 Take the Laplace of each equation: s*X(s) = -6*X(s) + 4*Y(s) - 2/s s*Y(s) = -X(s) - 2*Y(s) + 5/s Gather X(s) and Y(s) to the LHS, and keep remaining terms on the right. s*X(s) + 6*X(s) - 4*Y(s) = -2/s s*Y(s) + X(s) + 2*Y(s) = 5/s Factor: (s + 6)*X(s) - 4*Y(s) = -2/s X(s) + (s + 2)*Y(s) = 5/s Use Cramer's rule to solve for X(s) & Y(s) Main determinant D = (s + 6)*(s + 2) + 4 = s^2 + 8*s + 16 = (s + 4)^2 Determinant for X: Dx = -2/s*(s + 2) + 4*5/s = 16/s - 2 Determinant for Y: Dy = (s + 6)*5/s + 3/s = 32/s + 5 Construct solution for X(s) & Y(s) X(s) = Dx/D = (48/s - 6)/(s + 4)^2 = (16 - 2*s)/(s*(s + 4)^2) Y(s) = Dy/D = (96/s + 15)/(s + 4)^2 = (32 + 5*s)/(s*(s + 4)^2) Partial fractions for X & Y: X(s) = A/s + B/(s + 4)^2 + C/(s + 4) = 1/s - 6/(s + 4)^2 - 1/(s + 4) Y(s) = D/s + E/(s + 4)^2 + F/(s + 4) = 2/s - 3/(s + 4)^2 - 2/(s + 4) Inverse Laplace for final solution: x(t) = 1 - 6*t*e^(-4*t) - e^(-4*t) y(t) = 2 - 3*t*e^(-4*t) - 2*e^(-4*t)
@kibetbera9194
@kibetbera9194 6 жыл бұрын
Thank you
@jrshaker8592
@jrshaker8592 Жыл бұрын
ur a kingggggg
@kunsworld4682
@kunsworld4682 5 жыл бұрын
Could someone please explain with basic english why he put +3 in the answer.I solved this problem and didn't add +3.
@carultch
@carultch Жыл бұрын
What he's doing, is he's adding zero in a fancy way, so that when he breaks apart the Laplace transform to take its inverse Laplace, he can recognize the components in a standard table of Laplace transforms, and match them to the original function.
@SepiaDragoonGR
@SepiaDragoonGR 5 жыл бұрын
what happens if youre not given y'(0)?
@GeodesicBruh
@GeodesicBruh 5 жыл бұрын
SepiaDragoonGR you call it C or whatever you want and treat it as a constant.
@joonxiong9044
@joonxiong9044 3 жыл бұрын
hello brother
@universalmind2833
@universalmind2833 7 жыл бұрын
Wow thanks! :)
@muctep-dehuc
@muctep-dehuc 7 жыл бұрын
you have a mistake: L{y"}=s^2L{y}-sy'-y but in 2nd string you put 6 as y and -1 as y'
@helloitsme7553
@helloitsme7553 7 жыл бұрын
Денис Дрожжин no he doesn't
@pankajaranirani995
@pankajaranirani995 4 жыл бұрын
Plz solve this y ^2-2y^1-8y=0
@carultch
@carultch Жыл бұрын
Given: y" - 2*y' - 8*y = 0 Assume arbitrary initial conditions of y(0) = u and y'(0) = v, and take the Laplace: s^2*Y(s) - s*u - v - 2*s*Y(s) + 2*u - 8*Y(s) = 0 Shuffle initial conditions to the right, and factor the left: (s^2 - 2*s - 8)*Y(s) = u*s + v - 2*u (s + 2)*(s - 4)*Y(s) = u*s + v - 2*u Isolate Y(s): Y(s) = (u*s + v - 2*u)/((s + 2)*(s - 4)) Partial fractions: Y(s) = A/(s + 2) + B/(s - 4) Since we have two unknowns, and two unspecified initial conditions, we don't really need to solve for A and B. Just leave them as arbitrary constants, since they ultimately both depend on u and v anyway, which are both unknowns. If we had 3 unknowns and 2 initial conditions, then only one of them would be independent of u and v, which would be the one that is part of the particular solution. The coefficients on the homogeneous part of the solution will be the coefficients that depend on initial conditions of u and v. Inverse Laplace, for our general solution of: y(t) = A*e^(-2*t) + B*e^(4*t)
@john-athancrow4169
@john-athancrow4169 6 жыл бұрын
Cleaner
@clopensets6104
@clopensets6104 3 жыл бұрын
bRuh, you could've just solved it with a characteristic equation like a normie.
@tomatrix7525
@tomatrix7525 3 жыл бұрын
Yeah, but the whole point of the video is to use this method.....
@Mayk_thegoat
@Mayk_thegoat Жыл бұрын
SIR YOU ARE MISTAKEN
Solve differential equation with laplace transform, example 2
15:21
blackpenredpen
Рет қаралды 145 М.
Using Laplace Transforms to Solve Differential Equations
19:27
Houston Math Prep
Рет қаралды 283 М.
How Many Balloons To Make A Store Fly?
00:22
MrBeast
Рет қаралды 197 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 42 МЛН
You probably haven't solved a quartic equation like this before!
12:59
Using Laplace Transforms to solve Differential Equations ***full example***
9:30
Laplace Transform Initial Value Problem (Example)
6:18
BriTheMathGuy
Рет қаралды 167 М.
the COOLEST limit on YouTube!
9:50
blackpenredpen
Рет қаралды 49 М.
if x+y=8, find the max of x^y (Lambert W function)
12:59
blackpenredpen
Рет қаралды 761 М.
Laplace Transform: First Order Equation
22:38
MIT OpenCourseWare
Рет қаралды 293 М.
Solving Differential Equations Using LaPlace Transforms Ex. 1
8:37
Solving x^5=1
9:49
blackpenredpen
Рет қаралды 173 М.
How to solve exact and non-exact ODE
20:28
Prime Newtons
Рет қаралды 22 М.