So many of us engineering student is depending on videos like this so thank you so much
@blackpenredpen5 жыл бұрын
: )
@aphelmusonda52532 жыл бұрын
true
@ayashmuhammadhu12 жыл бұрын
@@blackpenredpen yes true
@Bushido100-ko8es7 ай бұрын
@@ayashmuhammadhu1 yes true to your yes true
@letsgetiton996 жыл бұрын
this kind of videos MUST be paid!! im grateful its very free and bprp is soooo noice
@blackpenredpen6 жыл бұрын
leopardi the poodle NoName I am very glad to hear! Best of luck on your finals (if you are taking any soon)
@letsgetiton996 жыл бұрын
@@blackpenredpen i actually do next week☺
@blackpenredpen6 жыл бұрын
leopardi the poodle NoName Yup, I guessed it right! Best of luck and let me know how it goes!
@dp66386 жыл бұрын
4:48, you can also use the partial fraction decomposition to make it easy!
@wvadam5 жыл бұрын
Thank you for pointing out the S is not a 5, I make this mistake all the time! these are the tips students need
@varshathaya2515 Жыл бұрын
Great sir👏
@arts58524 жыл бұрын
The best channel about math. Thank you for your videos. It’s really helpful
@akashdosanjh47523 жыл бұрын
great video straight to the point. Making calculus more fun and learnable
@ndifor_kenny2 жыл бұрын
Thank you so much. I used this video in preparation for a national exam and a quetstion similar to this came up. THANKS🙏
@mangomango5660 Жыл бұрын
You are a true saviour
@K-Von6 жыл бұрын
Your videos are so useful. Congrats for you channel!
@bakangsbakho88526 жыл бұрын
why would someone dislike this video ?
@lovemoremoses30484 жыл бұрын
You are just a blessing. Period #
@furkanturkal84145 жыл бұрын
Thank you for your clean-explanation.
@aphelmusonda52532 жыл бұрын
you're really helping us lot, we thenk you prof.
@mohamedabdifatahmohamed74802 жыл бұрын
Thanks good explanation
@KazACWizard2 жыл бұрын
im gonna use this method for my high school de courses. so much better.
@simonlinden81676 жыл бұрын
Great videos. but on this you lost me on the last inverse transform ( blue, right hand side). I've never seen this trick of splitting the squared into a 1+1. If someone could explain this or point me in the right direction it would be appreciated.
@GhostyOcean6 жыл бұрын
Laplace{t^n}=n!/(s^[n+1]), so we can deduce that 1/s^2 is t^1.
@nilsoncampos83362 жыл бұрын
Great video! I have a question for you: Is there another way to do inverse of Laplace transform? I mean, any formula, theorem... And so on.
@OldSJF Жыл бұрын
Really good video!
@beinerthchitivamachado98926 жыл бұрын
God Bless You Bro, Helpful AF!
@MilesComstock Жыл бұрын
Perfect example thank you
@harleyspeedthrust40133 жыл бұрын
laplace transform is straight black magic
@carultch Жыл бұрын
Integration by parts is Ultraviolet Voodoo
@ricardooow7 жыл бұрын
Is this possible without an initial condition? If so can you show it, I'm trying it myself but I get stuck when having to inverse the Laplace transform
@carultch Жыл бұрын
You would put in initial conditions as variables. Like letting y(0) equal w, and letting y'(0)=v. Then, you can pick any initial conditions to see the solution in action.
@DrRockyify6 жыл бұрын
in my class, the teacher taught us to assume that y=e^(rx) and solve a quadratic equation. If the r doesn't have any real roots, just use cosine and sine.
@dp66386 жыл бұрын
4:48, you can also use the partial fraction decomposition!
@GhostyOcean6 жыл бұрын
That's one way of solving this kind of diff EQ. There is usually more than one way to solve problems in math, so your way isn't wrong per say. The question could ask you to solve the equation using the Laplace transformation, so you'd need to know how to do this as well.
@carultch Жыл бұрын
The Laplace transform is particularly useful when you DON'T have the equation equal to zero, but instead there is a forcing function of t, on the other side of the equals sign. The assume y=e^(r*t), and solve a quadratic equation works best for the homogeneous cases. He's using this as an example to demonstrate the concept of solving the same problem via a Laplace transform.
@ShuklaMathsAcademy5 жыл бұрын
Good.
@abigailabigail57276 жыл бұрын
Omg thank you 😭🙈
@chinyereeorji31675 жыл бұрын
abigail abigail he's good
@abhijitbhat27607 жыл бұрын
i like ur vdos
@kavkaz2005ify Жыл бұрын
A real G ! God bless
@BEbouzywouzyBE7 жыл бұрын
Hey, I really appreciate your videos. They inspire me a lot ! I also have a request, can you explain the integral of (e^x*cosx) ? It's a partial integral which I don't know how to solve.
@ralfbodemann15427 жыл бұрын
I would use the identity cosx= 0.5(e^îx+e^-ix). Then you only have to integrate e-functions.
@blackpenredpen7 жыл бұрын
BouzyWouzy I did the integral of e^xsinx here kzbin.info/www/bejne/aHqQkIaMbciqqdk and it should help u with ur problem
@BEbouzywouzyBE7 жыл бұрын
Ohh thanks a lot !! It will definitely help me with studying. Like all of your videos, actually :)
@ElifArslan-l9g2 жыл бұрын
thank you
@evwerenisaacoghenenyerhovw2323 ай бұрын
Sir please I need videos on Laplace transform from the scratch.m pls help me
@karinarodriguez67845 жыл бұрын
Hi great vid, I just have one question regarding the solution, why do you add 3te^3t instead of subtracting it?
@beno79695 жыл бұрын
Bottom left of the board, he factored the negative out so he could manipulate the insides of the function. When he took the inverse laplace, he distributed the negative again, making the 3 positive.
@jonwright94527 жыл бұрын
would it be possible to solve without a boundary condition using laplace ?
@GhostyOcean6 жыл бұрын
This would be an initial value problem, and as far as I'm aware the Laplace transformation only works for IVPs and not BVPs.
@harleyspeedthrust40133 жыл бұрын
@@GhostyOcean fax u cant solve w laplace w out initial vals
@carultch Жыл бұрын
The most you could do, is use placeholder constants, like defining u = y(0), and v = y'(0). Then, you solve it in terms of u and v as placeholders for these numbers. At the end of the solution of a 2nd order system, two of the numbers will depend on u and v, and the remaining terms (if they exist) will have their own coefficients that are independent of u and v. The terms that depend on u and v, can ultimately have their coefficients replaced with arbitrary coefficients. As an example, consider: y" + 6*y' + 9*y = 1 - e^(-t) let u = y(0) and v = y'(0) Take the Laplace transform: s^2*Y(s) - v - s*u + 6*s*Y(s) - 6*u + 9*Y(s) = 1/s - 1/(s + 1) Shuffle initial conditions to the right, and factor the left: (s^2 + 6*s + 9)*Y(s) = 1/s - 1/(s + 1) + (s + 6)*u + v Isolate Y(s), and factor: Y(s) = (1/s - 1/(s + 1) + (s + 6)*u + v)/(s + 3)^2 Shuffle denominators below, expand and gather: Y(s) = (s^3*u + (7*u + v)*s^2 + (6*u + v)*s + 1)/(s*(s+1)*(s+3)^2) Partial fractions: Y(s) = A/s + B/(s + 1) + C/(s+3)^2 + D/(s+3) A = 1/9, B = -1/4, C = 3*u + v + 1/6, D =1/72*(450*u + 54*v + 37) Since C and D both are functions of u and v, we can leave them as unspecified constants, and get the general solution: Y(s) = 1/9/s - 1/4/(s+1) + C/(s + 3)^2 + D/(s + 3) Inverse Laplace: y(t) = 1/9 - 1/4*e^(-t) + C*t*e^(-3*t) + D*e^(-3*t)
@abbaskhan69564 жыл бұрын
Great. I have also a channel of mathematics.
@abhayr20704 жыл бұрын
Is it possible to do this without initial condition?
@carultch Жыл бұрын
You can make up placeholder initial conditions. For instance, let y(0) = u, and let y'(0) = v. Given: y" + 6*y' + 9*y = 0, and the above placeholder initial conditions. Let Y(s) = £{y(t)} £{y"(t)} = s^2*Y(s) - v - s*u £{y'(t)} = s*Y(s) - u Compile, expand, gather, and shuffle initial conditions to the right:: (s^2 + 6*s + 9)*Y(s) = u*s + v + 6*u Isolate Y(s) and factor: Y(s) = (u*s + v + 6*u)/(s + 3)^2 Arrange the numerator so one part looks like (s +3)/(s + 3)^2: u*s + v + 6*u = u*(s + 3) - 3*u + v + 6*u = u*(s + 3) + v + 3*u Thus: Y(s) = u/(s + 3) + (v + 3*u)/(s + 3)^2 Take inverse Laplace: y(t) = u*e^(-3*t) + (v + 3*u)*t *e^(-3*t) If you just want the general solution, replace u and (v + 3*u) with your two arbitrary constants, such that y(t) = A*e^(-3*t) + B*t*e^(-3*t). If there were a third term due to starting with a non-homogeneous equation, it would have a coefficient that is independent of the initial conditions.
@silvally49923 жыл бұрын
Fourier Series please
@lexluthorjf2 жыл бұрын
Thank you for that. But I have a question: how to solve an ODE by Laplace when y(k) = n and y'(k) = m, for k =/= 0?
@carultch Жыл бұрын
To solve an equation with non-initial conditions instead of initial conditions, you cannot do it directly with the Laplace transform. The Laplace transform only works with initial conditions directly. However, there are other methods we could use. One method is to assign arbitrary initial conditions at t=0 as placeholders, and then solve for them later to match the given information, such as y(0) = u and y'(0) = v. Another method with the way you've given the information, is to simply assign capital T, such that capital T is zero when t=k. This means that T = t - k. Then our delayed start conditions, end up being initial conditions after all, and we can proceed with solving the problem in the capital T domain. I'll use capital S to reflect the difference. And then undo the shift, to get back to the little t domain. For this example: y" + 6*y' + 9*y = 0 y(k) = n, y'(k) = m S^2*Y(S) - S*n - m + 6*S*Y(S) - 6*n + 9*Y(S) = 0 Shuffle initial conditions to the right: (S^2 + 6*S + 9)*Y(S) = S*n + 6*n + m Isolate Y(S) and factor the bottom: Y(S) = (S*n + 6*n + m)/(S + 3)^2 Partial fractions: Y(S) = n/(S+3) + (3*n + m)/(S + 3)^2 Solution in capital T world: y(T) = n*e^(-3*T) + (3*n + m)*T*e^(-3*T) Recall that T = t - k, and replace accordingly: y(T) = n*e^(-3*(t - k)) + (3*n + m)*(t - k)*e^(-3*(t - k))
@john-athancrow41696 жыл бұрын
Look at the diifrence! Its only the square!
@jsingh81924 жыл бұрын
Thx very very very much
@АйгеримЕрбол-э4к4 жыл бұрын
Thanks buddy. Why do you need to hold this huge black ball
@alexismisselyn39164 жыл бұрын
if he drops it there's an earthquake It's a microphone.
@g0dsm4ck1007 жыл бұрын
I love you
@blackpenredpen7 жыл бұрын
thanks!
@stephent13227 жыл бұрын
lmao i was just gonna write this. i also love him. hey its 2017 after all !
@Jay-rg5mt2 жыл бұрын
What a Chad this guy is
@benbaribault4244 жыл бұрын
i would get so confused trying to write with two different colored pens in the same hand
@chrisvals627 жыл бұрын
Brilliant!
@dreamsboy20364 жыл бұрын
in Our Engineering Compus Y(0)= 1 And Here Y(0)= -1 Who is Wrong Our Professor or Our Youmather😅😅😅
@blackpenredpen4 жыл бұрын
This is a very common example lol.
@juniorjay0014 жыл бұрын
lost me at 5:30
@ralphlaurenzsy10146 жыл бұрын
If y" is equal to s^2 y(s) what now is the equal of 2x"? Is it 2s^2 y(s) thank you in advance
@carultch Жыл бұрын
If there are multiple dependent variables, x, and y, then Y(s) and X(s) would be two separate Laplace transforms that don't necessarily have anything to do with one another, until a constraint is established. An example of when you would see this, is in systems of diffEq's. Consider the following system, with both x(0) = 0, and y(0) = 0. x'(t) = -6*x(t) + 4*y(t) - 2 y'(t) = -x(t) - 2*y(t) + 5 Take the Laplace of each equation: s*X(s) = -6*X(s) + 4*Y(s) - 2/s s*Y(s) = -X(s) - 2*Y(s) + 5/s Gather X(s) and Y(s) to the LHS, and keep remaining terms on the right. s*X(s) + 6*X(s) - 4*Y(s) = -2/s s*Y(s) + X(s) + 2*Y(s) = 5/s Factor: (s + 6)*X(s) - 4*Y(s) = -2/s X(s) + (s + 2)*Y(s) = 5/s Use Cramer's rule to solve for X(s) & Y(s) Main determinant D = (s + 6)*(s + 2) + 4 = s^2 + 8*s + 16 = (s + 4)^2 Determinant for X: Dx = -2/s*(s + 2) + 4*5/s = 16/s - 2 Determinant for Y: Dy = (s + 6)*5/s + 3/s = 32/s + 5 Construct solution for X(s) & Y(s) X(s) = Dx/D = (48/s - 6)/(s + 4)^2 = (16 - 2*s)/(s*(s + 4)^2) Y(s) = Dy/D = (96/s + 15)/(s + 4)^2 = (32 + 5*s)/(s*(s + 4)^2) Partial fractions for X & Y: X(s) = A/s + B/(s + 4)^2 + C/(s + 4) = 1/s - 6/(s + 4)^2 - 1/(s + 4) Y(s) = D/s + E/(s + 4)^2 + F/(s + 4) = 2/s - 3/(s + 4)^2 - 2/(s + 4) Inverse Laplace for final solution: x(t) = 1 - 6*t*e^(-4*t) - e^(-4*t) y(t) = 2 - 3*t*e^(-4*t) - 2*e^(-4*t)
@kibetbera91946 жыл бұрын
Thank you
@jrshaker8592 Жыл бұрын
ur a kingggggg
@kunsworld46825 жыл бұрын
Could someone please explain with basic english why he put +3 in the answer.I solved this problem and didn't add +3.
@carultch Жыл бұрын
What he's doing, is he's adding zero in a fancy way, so that when he breaks apart the Laplace transform to take its inverse Laplace, he can recognize the components in a standard table of Laplace transforms, and match them to the original function.
@SepiaDragoonGR5 жыл бұрын
what happens if youre not given y'(0)?
@GeodesicBruh5 жыл бұрын
SepiaDragoonGR you call it C or whatever you want and treat it as a constant.
@joonxiong90443 жыл бұрын
hello brother
@universalmind28337 жыл бұрын
Wow thanks! :)
@muctep-dehuc7 жыл бұрын
you have a mistake: L{y"}=s^2L{y}-sy'-y but in 2nd string you put 6 as y and -1 as y'
@helloitsme75537 жыл бұрын
Денис Дрожжин no he doesn't
@pankajaranirani9954 жыл бұрын
Plz solve this y ^2-2y^1-8y=0
@carultch Жыл бұрын
Given: y" - 2*y' - 8*y = 0 Assume arbitrary initial conditions of y(0) = u and y'(0) = v, and take the Laplace: s^2*Y(s) - s*u - v - 2*s*Y(s) + 2*u - 8*Y(s) = 0 Shuffle initial conditions to the right, and factor the left: (s^2 - 2*s - 8)*Y(s) = u*s + v - 2*u (s + 2)*(s - 4)*Y(s) = u*s + v - 2*u Isolate Y(s): Y(s) = (u*s + v - 2*u)/((s + 2)*(s - 4)) Partial fractions: Y(s) = A/(s + 2) + B/(s - 4) Since we have two unknowns, and two unspecified initial conditions, we don't really need to solve for A and B. Just leave them as arbitrary constants, since they ultimately both depend on u and v anyway, which are both unknowns. If we had 3 unknowns and 2 initial conditions, then only one of them would be independent of u and v, which would be the one that is part of the particular solution. The coefficients on the homogeneous part of the solution will be the coefficients that depend on initial conditions of u and v. Inverse Laplace, for our general solution of: y(t) = A*e^(-2*t) + B*e^(4*t)
@john-athancrow41696 жыл бұрын
Cleaner
@clopensets61043 жыл бұрын
bRuh, you could've just solved it with a characteristic equation like a normie.
@tomatrix75253 жыл бұрын
Yeah, but the whole point of the video is to use this method.....