For a more challenging problem, consider the case where the right-hand side of the equation is an arbitrary real constant, c: (1 + 1/x)^(x+1) = c This can be separated into two cases: c < e and c > e (c = e does not have a finite real solution) I will not show the steps, but the solution is: x = -1 / ( ln(c) / W( - ln(c) / c ) + 1 ) where W(u) is the product-log function, aka Lambert-W, and is: Wm(u), the lower branch of the product-log, for c < e Wp(u), the principal branch of the product-log, for c > e
@SyberMath2 жыл бұрын
Np
@XJWill12 жыл бұрын
@@SyberMath He loves me, he loves me not. Love given and love taken away. So sad.
@GourangaPL2 жыл бұрын
Story time: when i was at the university i missed my class where we were told about this e limit, so on the exam instead of just using this fact i covered 2 sheets of paper to proove it, then after the exam i talked to my classmates asking if they also found it out it was e and they were like "well yes it's equal to e, everyone knows that"... #emotional_damage :D
@SyberMath2 жыл бұрын
😁
@imonkalyanbarua2 жыл бұрын
Your solutions are so wholesome! Not only do you explain it analytically but also geometrically (or graphically, whichever you find comfortable) which helps us appreciate the depth of the problem and understand it in a more nuanced manner. Truly, you are doing an amazing work! God bless you.. 😇🙏
@SyberMath2 жыл бұрын
Thank you for the kind words! 🥰
@imonkalyanbarua2 жыл бұрын
@@SyberMath 🤗❤️
@jesusrh36652 жыл бұрын
If you look to the general case (x+1/x)^x+1=(1+1/k)^k,=> (x+1/x)^x+1=(1-1/k+1)^-k , just by comparing both sides you get the formula for the general case x=-(k+1).
@cicik572 жыл бұрын
limit are no use, you should calcualte derivative to show that the function always descends and therefore -7 is the only solution.
@juanmolinas2 жыл бұрын
Wow Syber!, that´s really cool use to for (a/b)=(b/a)^-1...I had not thought of it...
@SyberMath2 жыл бұрын
😊
@pk27122 жыл бұрын
The horizontal asymptote is y = e . The left branch approaches it from below ; but , never crosses it . The right branch approaches it from above but never crosses it , This is kind of what you said with the limits . y =(1+1/x)^(x+1) crosses y = (7/6)^7 at x = --- 7 because (7/6)^7 is less than e .
@SyberMath2 жыл бұрын
Nice!
@or62382 жыл бұрын
Congratulations on 100k!!!
@SyberMath2 жыл бұрын
Thank you so much 😀🥰💖
@geraldtros8352 жыл бұрын
🙂 Thanks! Yes, I did find it interesting. And entertaining, as pretty well always!
@SyberMath2 жыл бұрын
Np. Thank you!
@urielozer2 жыл бұрын
Very smart solution
@SyberMath2 жыл бұрын
Thanks!
@markobavdek94502 жыл бұрын
5:01 "... is getting smaller and smaller... But actually not...Anyways." Blablabla, philosophy...
@pranavamali052 жыл бұрын
Thnku
@elmurazbsirov76172 жыл бұрын
Təşəkkürlər.
@SyberMath2 жыл бұрын
Rica ederim!
@Jha-s-kitchen2 жыл бұрын
Nice algebraic manipulation of (7/6)^6 😂 I remember 3 digits of e, numerically 2.718 and 3.14 of pi
@SyberMath2 жыл бұрын
You are good!
@Jha-s-kitchen2 жыл бұрын
@SyberMath, now upto 5 digits, 3.14159 after watching this: kzbin.info/www/bejne/r53Ff5lvg655i8k 😂😂🤣
@Muslim_0112 жыл бұрын
There is only one solution x=-7 The e is not a solution. The f(x) aprouch the e line but not crossing it at all