solving the differential equation y''+y=tan(t) by variation of parameters

  Рет қаралды 128,587

blackpenredpen

blackpenredpen

Күн бұрын

We will be solving the differential equation y''+y=tan(t) by using the variation of parameters method. To see how to derive the variation of parameters formula, please see here • Variation of Parameter...
Check out my differential equation playlists for more lessons and tutorials: www.youtube.co...
🍎 Support me on patron / blackpenredpen
#differentialequation #math #blackpenredpen

Пікірлер: 111
@raotalha6076
@raotalha6076 7 жыл бұрын
my teacher solved it in more easy way
@therodeo4372
@therodeo4372 7 жыл бұрын
DONT DISRESPECT THE MAN HES FUCKING AMAZING KEEP ON DOING YOUR THING BPRP
@koober_
@koober_ 7 жыл бұрын
Yes, there are easier ways, such as just using the formula, but this way (as well as the method involving matrices) kind of gives you some background on how to derive the formulas.
@poojarani6046
@poojarani6046 6 жыл бұрын
So why are you watching dis.... Go n study to your teacher......dont show off man!
@ThilebanTheEngineer
@ThilebanTheEngineer 6 жыл бұрын
Watch my channel for more easy way..
@Ethan-rw7ub
@Ethan-rw7ub 6 жыл бұрын
Hey guys chill alright? It's completely normal that there are faster ways to solve a question, don't get so butthurt.
@tagekumarpaul7474
@tagekumarpaul7474 4 жыл бұрын
For anyone watching, after he gets the system of equations that he has to solve, you can use cramer's rule to get v1' and v2' and then integrate to get v1 and v2. It's a slightly faster way. Great video though. I love this guys channel.
@dessa8242
@dessa8242 3 жыл бұрын
you are a lifesaver guy!!! I have been hovering multiple videos about this topic, none of the videos had any clear and confidential explanation, rather than yours. they just be there for the purpose of collecting subscriptions.
@KeyMan137
@KeyMan137 7 жыл бұрын
For those who want the final solution: y = C1 cos(t) + C2 sin(t) - cos(t) ln|sec(t) + tan(t)|
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Spencer Key yay!
@carultch
@carultch Жыл бұрын
Problem: find the Fourier Series.
@jackkalver4644
@jackkalver4644 Жыл бұрын
Is variation of parameters ever easier than linear integration? Here’s the same problem solved directly: y”+y=tan t y”*cos t+y*cos t=sin t y’*cos t+y*sin t=C1-cos t y’*sec t+y*tan t*sec t=C1*sec^2 t-sec t y*sec t=C1*tan t-ln|sec t+tan t|+C2 y=C1*sin t-cos t*ln|sec t+tan t|+C2*cos t
@helldogforever
@helldogforever 5 жыл бұрын
I understand this now with 1000% clarity.
@reubenwilliammpembe667
@reubenwilliammpembe667 6 жыл бұрын
you are the best!!!! #RespectFromSouthAfrica
@jaimeduncan6167
@jaimeduncan6167 7 жыл бұрын
Excellent work as always. By the way it was easier to substitute v2 derivative instead in the first equation, exploiting the zero.
@kindofhungry
@kindofhungry 7 жыл бұрын
Can you do one using wronskians and integral? Ex: u_1 = int((y_2(t)*g(t))/W(y_1,y_2))
@blackpenredpen
@blackpenredpen 7 жыл бұрын
y"+y=tan(t)
@dyer308
@dyer308 7 жыл бұрын
I love all your videos!
@batubulgur
@batubulgur 7 жыл бұрын
blackpenredpen blue pen? there is something wrong with this video... :)
@blackpenredpen
@blackpenredpen 7 жыл бұрын
raees khan thanks!!
@jevcampbell2301
@jevcampbell2301 4 жыл бұрын
you my friend deserve a medal. You will reach 1 mil subs
@GSHAPIROY
@GSHAPIROY Жыл бұрын
It happened, on November 11, 2022.
@therodeo4372
@therodeo4372 7 жыл бұрын
THANK YOU!!!! PLEASE KEEP IT COMING I HAVE CALC 3 IN THE FALL AND LINEAR ALGEBRA IN THE SPRING
@eess2396
@eess2396 6 ай бұрын
太谢谢你了,我考前复习正好看到这个问题不懂,你这个办法也挺好的,用包含矩阵的积分公式似乎对我来说难以记忆,如果真忘了那我只好推导了哈哈老师说我们时间很够。
@osunrinadebukola6082
@osunrinadebukola6082 8 ай бұрын
Very helpful. God bless you
@valentinlishkov9540
@valentinlishkov9540 7 ай бұрын
Issue: What is a differential of an irrational argument? Let a= some rational approximation, and A be the irrational number itself (if that makes sense). Then A - a > dA and there is no way a + dA > A
@iindifferent
@iindifferent 7 жыл бұрын
Excellent video! Thank you so much.
@bird9
@bird9 3 жыл бұрын
THANK YOU BlackPenRP
@Physticuffs
@Physticuffs 9 ай бұрын
Finally i understand this. Thank you!
@Salamanca-joro
@Salamanca-joro 5 күн бұрын
so now i will have to go back and review how to integerate trig functions
@hmjawad087
@hmjawad087 4 жыл бұрын
Just Amazing Brother..!!!
@ssdass4303
@ssdass4303 Жыл бұрын
why dont u just plug in V2' which u just solved
@cassiechandler4314
@cassiechandler4314 7 жыл бұрын
Very Helpful
@johansvensson830
@johansvensson830 6 жыл бұрын
Thank you so much!
@raptokvortex
@raptokvortex 7 жыл бұрын
Cool. We've only learnt how to solve linear second order differential equations by inspection so far.
@Ggon636
@Ggon636 4 жыл бұрын
After finding V'2 why can we not plug it into one of the equations to acquire V'1??
@aritro3
@aritro3 4 жыл бұрын
you can
@tomatrix7525
@tomatrix7525 4 жыл бұрын
Yep, you can get it many ways. Whatever floats your equation bro
@jameshenner5831
@jameshenner5831 6 жыл бұрын
plotting this solution reveals a weirdly lumpy periodic function with the period of 2*pi. The lumpiness is kind of interesting if the coefficients of sine and cosine are relatively small. picture: i.imgur.com/Pnu2Yua.jpg
@mkt92z
@mkt92z 5 жыл бұрын
Is it easier to use wronskian couple with cramers rule?
@carlmarionmanlapaz4697
@carlmarionmanlapaz4697 5 жыл бұрын
hello there how to do that when i have more than 3 equations? are there techniques to quicken the solving? @blackpenredpen
@sunnymanish5514
@sunnymanish5514 Жыл бұрын
6:18 - 6:22 was epic
@sirius.aeternus
@sirius.aeternus 4 жыл бұрын
he makes me laugh when he laughs lol
@hanwadou1777
@hanwadou1777 7 жыл бұрын
Good job I love it so much
@zainabalmusawi7749
@zainabalmusawi7749 6 жыл бұрын
طريقة الحل جدا مفهومه شكرا
@borg972
@borg972 6 жыл бұрын
Thanks! would love to see more examples for variation of parameters!
@poojarani6046
@poojarani6046 6 жыл бұрын
You and your methods are amazing and easily understandable also....
@WilliamBlake-yj2yu
@WilliamBlake-yj2yu 2 жыл бұрын
is this still cauchy euler method applied?
@joyceadeniyi9005
@joyceadeniyi9005 6 жыл бұрын
Thanks so much
@tobechukwublessed4274
@tobechukwublessed4274 Жыл бұрын
Thanks you
@fernandogallardo3477
@fernandogallardo3477 6 жыл бұрын
I have to do it via wronskian
@skepticmoderate5790
@skepticmoderate5790 4 жыл бұрын
Have to? That's the easier way. I always prefer a formula.
@benedictmaddara9248
@benedictmaddara9248 4 жыл бұрын
This is the safest solution possible. So, why not? haha
@jrcano1889
@jrcano1889 6 жыл бұрын
Thank you, my teacher want us to do it this way and not the wronskian method
@rohansawai6534
@rohansawai6534 4 жыл бұрын
#RespectfromIndia
@isaacdesantigoisaac1319
@isaacdesantigoisaac1319 7 жыл бұрын
i love your videos
@gulaykeskin8647
@gulaykeskin8647 7 жыл бұрын
thank you
@tanyaradzwakufa8709
@tanyaradzwakufa8709 3 жыл бұрын
why not use the wroskian approach
@charlesrothauser1328
@charlesrothauser1328 4 жыл бұрын
Where is C from the particular solution in the final answer?
@nurshafiqahjamaludin1702
@nurshafiqahjamaludin1702 6 жыл бұрын
ive just got the y1 for the yh, how i can solve it???
@programmingpython584
@programmingpython584 3 жыл бұрын
I am not getting how he takes y1=cost and y2 = sint. Please explain that
@burningoyster
@burningoyster 7 жыл бұрын
In what video do you explain the y_p equation?
@burningoyster
@burningoyster 7 жыл бұрын
Alright thanks!
@begadanan2649
@begadanan2649 Жыл бұрын
just use wronskian instead and easier and workds
@susovanmanna8323
@susovanmanna8323 3 жыл бұрын
🙏🙏sir u r amazing
@nurfitrah6126
@nurfitrah6126 7 жыл бұрын
can you help me how to solve y''+y= sec (theta) tan (theta). im confused when it has (theta)
@ΘέκλαΧατζηκώστα
@ΘέκλαΧατζηκώστα 6 жыл бұрын
y''+4y=cos(2x)
@yolcu8609
@yolcu8609 6 жыл бұрын
You can use undetermined coefficient method
@arkansh.h.1313
@arkansh.h.1313 5 жыл бұрын
hi thnx a lot. And how about this diff. eq. y''+5y'+11=tan(x)?
@iradnuriel9087
@iradnuriel9087 7 жыл бұрын
Hi blackpenredpen , I didn't realize why can I find the harmonic solution by solving a polinom? (sorry if my English is incorrect, I don't good in English)
@GHOSTrex1324
@GHOSTrex1324 4 жыл бұрын
lit outro music
@nhaminh5717
@nhaminh5717 3 жыл бұрын
What about y''+y'=tan(x)
@BukhalovAV
@BukhalovAV 7 жыл бұрын
Why there is no the coefficient C_3 at cos(t)*ln(abs(sec(t)+tan(t))) in the answer?
@fernandogallardo3477
@fernandogallardo3477 6 жыл бұрын
Particular solution.you don't need a c3.
@Rundas69420
@Rundas69420 7 жыл бұрын
We can all be happy that the original question is y"+y=tan(t) and not y"-y=tan(t).
@blackpenredpen
@blackpenredpen 7 жыл бұрын
That is correct!
@leroyj9044
@leroyj9044 6 жыл бұрын
I'm struggling along with y''-y=sinh(2x)
@matheusmodesto5794
@matheusmodesto5794 5 жыл бұрын
Why y1' +y2' = f(t)/a is valid? Is there have any theorems?
@repvoo2399
@repvoo2399 Жыл бұрын
you can watch the previous video about the variation of parameters, introduction, and idea, in case you are still alive.
@yahiazakarialadhem9411
@yahiazakarialadhem9411 5 жыл бұрын
thank's
@saidinesrine3689
@saidinesrine3689 5 жыл бұрын
what is the sect ???? THANKS
@carultch
@carultch Жыл бұрын
sec(t) = 1/cos(t)
@comic4u001
@comic4u001 5 жыл бұрын
Very helpfull. How Can i solve this equation please? y''-2y'-3y=3sinh(2x)-12cosh(2x)
@carultch
@carultch Жыл бұрын
Given: y" - 2*y' - 3*y = 3*sinh(2*x) - 12*cosh(2*x) For this example, I'd use the Laplace transform, and assign arbitrary initial conditions. This can also work using the method of undetermined coefficients, because sinh(2*x) and cosh(2*x) are both a linear combinations of e^(-2*x) and e^(2*x), so you can assume both of these as your ansatz of the particular solution for undetermined coefs. Let y(0) be u, and let y'(0) be v. Also let Y(s) = £{y(x)} £{y"} = s^2*Y(s) - v - u*s £{-2*y'} = -2*s*Y(s) + 2*u £{-3*y} = -3*Y(s) £{3*sinh(2*x))} = 6/(s^2 - 4) £{12*cosh(2*x))} = 12*s/(s^2 - 4) Thus: (s^2 - 2*s - 3)*Y(s) - v - u*s + 2*u = 6/(s^2 - 4) - 12*s/(s^2 - 4) Shuffle initial conditions to the right: (s^2 - 2*s - 3)*Y(s) = 6/(s^2 - 4) - 12*s/(s^2 - 4) + v + (s - 2)*u Change right side to common denominators: (s^2 - 2*s - 3)*Y(s) = (6 - 12*s + (u*s - 2*u + v)*(s^2 - 4))/(s^2 - 4) Isolate Y(s): Y(s) = (6 - 12*s + (u*s - 2*u + v)*(s^2 - 4))/((s^2 - 4)*(s^2 - 2*s - 3)) Factor denominator and expand/gather numerator: Y(s) = (u*s^3 + (v - 2*u)*s^2 - (12 + 4*u)*s + 8 u - 4 v + 6)/((s - 2)*(s + 2)*(s + 1)*(s - 3)) Partial fractions: Y(s) = A/(s - 3) + B/(s + 1) + C/(s - 2) + D/(s + 2) From experience, we know that the two solutions whose denominators are factors of the characteristic polynomial in front of Y(s), they will be the two solutions whose output depends on initial conditions. As such , C and D are the two coefficients that will be from the particular solution, and won't depend on initial conditions. Heaviside cover-up works great for finding them. So we might as well just leave A and B alone, as unknowns for the general solution. C = (u*2^3 + (v - 2*u)*2^2 - (4*u + 12)*2 + 8*u - 4*v + 6)/((2 +2)*(2 + 1)*(2 - 3)) = 3/2 D = (u*(-2)^3 + (v - 2*u)*(-2)^2 - (4*u + 12)*(-2) + 8*u - 4*v + 6)/((4 + 4)*(4 + 1)*(4 - 3)) = -3/2 Y(s) = A/(s - 3) + B/(s + 1) + 3/2/(s - 2) - 3/2/(s + 2) Take inverse Laplace: y(x) = A*e^(3*x) + B*e^(-x) + 3/2*e^(2*x) - 3/2*e^(-x) And we can consolidate our particular part of the solution as a single sinh: y(x) = A*e^(3*x) + B*e^(-x) + 3*sinh(2*x)
@alwinpriven2400
@alwinpriven2400 7 жыл бұрын
what's y'' is it the second derivative of y?
@blackpenredpen
@blackpenredpen 7 жыл бұрын
yes
@Kay-dx8vm
@Kay-dx8vm 6 жыл бұрын
My equation is a 3rd order nonhomogeneous. How can I solve it ?
@taimooralibukhari
@taimooralibukhari 6 жыл бұрын
if sin^2t+cos^2t=1 then v1'+v1=2v1'? isnt it?
@yarsak8067
@yarsak8067 5 жыл бұрын
Great vid as always! By the way, would this method also work with higher order derivatives (f.ex. y''', y"" etc)? Thanks!
@lightspd714
@lightspd714 2 жыл бұрын
Yes it does!
@Ocklepod
@Ocklepod 7 жыл бұрын
Not sure if title of video is quotation marks or 2 of '
@blackpenredpen
@blackpenredpen 7 жыл бұрын
niklas schüller lol
@__nog642
@__nog642 7 жыл бұрын
It's 2 of '
@daniell321
@daniell321 6 жыл бұрын
taking this adv ODE in year 3 mechanical engineering, will take adv PDE next year hope u can cover the topics in adv PDE love
@Malikasoy5828
@Malikasoy5828 3 жыл бұрын
한국인처럼 생겼군요 ...... 김태형 아시 잖아요
@isharauditha4257
@isharauditha4257 3 жыл бұрын
how do you become this much smart
@dirtybee224
@dirtybee224 7 жыл бұрын
My teacher makes use of matrix to make it look easier and faster.
@husamrajeh179
@husamrajeh179 6 жыл бұрын
You forgot to write y2v2 its sinx(-cosx)
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Day orange6 ?
@stumbling
@stumbling 6 жыл бұрын
He did, it cancelled out. :)
@husamrajeh179
@husamrajeh179 6 жыл бұрын
At the end u forgot to ad y2u2
@takudzwabveke2599
@takudzwabveke2599 7 жыл бұрын
wakanyanya
@shanaraj6580
@shanaraj6580 2 жыл бұрын
👏🏽👏🏽👏🏽👏🏽👏🏽
@tobechukwublessed4274
@tobechukwublessed4274 Жыл бұрын
Cooll
@hecadream9717
@hecadream9717 3 жыл бұрын
uau
@slaywithkeke7129
@slaywithkeke7129 3 жыл бұрын
Thank you very much. Much appreciated.
@justin-ls5yc
@justin-ls5yc 3 жыл бұрын
thank you
Variation of Parameters (introduction & idea)
15:47
blackpenredpen
Рет қаралды 139 М.
Power Series Solution for a differential equation
21:20
blackpenredpen
Рет қаралды 201 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 12 МЛН
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 22 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
a very interesting differential equation
21:26
Michael Penn
Рет қаралды 115 М.
Physics Students Need to Know These 5 Methods for Differential Equations
30:36
Physics with Elliot
Рет қаралды 1,1 МЛН
Variation of Parameters || How to solve non-homogeneous ODEs
10:56
Dr. Trefor Bazett
Рет қаралды 171 М.
You probably haven't solved a quartic equation like this before!
12:59
Cauchy Euler Differential Equation (equidimensional equation)
13:45
blackpenredpen
Рет қаралды 182 М.
Differential Equations: Lecture 4.6 Variation of Parameters
40:11
The Math Sorcerer
Рет қаралды 45 М.
Variation of Parameters
19:22
MIT OpenCourseWare
Рет қаралды 63 М.
Variation of Parameters - Nonhomogeneous Second Order Differential Equations
11:36
The Organic Chemistry Tutor
Рет қаралды 525 М.
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 12 МЛН