I actually understood this! you got me through cal 1, cal 2, and now differential equations. Thank you!
@BrainGainzOfficial5 жыл бұрын
You're one of the reasons why I currently have an A in my differential equations class. Thank you!!!
@MrEngineer-TRD4 жыл бұрын
"one of the reasons" you mean you watch someone else videos also??? You traitor😠😂
@mikalmike75814 жыл бұрын
hi Brain
@abdallababikir44732 жыл бұрын
@@MrEngineer-TRD Hahaha, oddly enough Ik a guy with your name. Are you a civil engineering uofa student?
@boyhandsome40472 жыл бұрын
@@abdallababikir4473 University of Alberta in Canada?
@abdallababikir44732 жыл бұрын
@@boyhandsome4047 yeah. I asked my friend who has this name but he's not the guy to make this comment.
@How2Helper20134 жыл бұрын
My instructor was unclear with the derivation of the formulas, so I've been having trouble with variation of parameters until I came across your video! Thank you so much!! :D
@BlumChoi4 жыл бұрын
4:30 you should explain why you can impose that condition.
@JDMaxton19993 жыл бұрын
And so we reach the part of this topic that seemingly no one explains
@Mordecaialivanoshea3 жыл бұрын
@@JDMaxton1999 Basically, it's not so much of an assumption, but more like an "educated guess". Whomever figured this out realized that making y1v1' + y2v2' = 0 would cut our problem in half, and has a nice form to plug into the DE. You can use any random number as a guess, but what you end up with is some nasty or potentially unsolvable DE problems. So this is a nice way to find a general form. Like BPRP was saying in his video, if we kept the first derivative as is, then when we plug it back into our original DE, we will be running into a second order DE within a second order DE. Just nasty, nasty stuff. Remember, c1y1 + c2y2 is A fundamental set, not THE fundamental set. There is potentially more than one answer for these problems based upon what initial conditions are given to either the constants or what f(t) is. This is just THE fundamental set based upon the given conditions. I hoped this helps. I'm also not a fan of "hand wave, black box magic" with math, but sometimes it's better to trust the system then learn later on why. I find this to be the "if your quadratic is becoming unsolvable, see if you can graph it and get an answer that way" equivalent in DE.
@MushookieMan3 жыл бұрын
The explanation is given by the *second* answer to the math stackexchange question titled "Justifying an Assumption Made While Deriving the Method of Variation of Parameters". It explains the *simple* reason why 'osculating functions' will always satisfy this constraint. I have no idea why this step is never justified, now that I know the answer is so easy to digest.
@thebush6379 Жыл бұрын
Ive watched many videos, and this is one if the few that went into explaining and proving the methods and formulas for solving this problem
@abd-elrahmanmohamed98396 жыл бұрын
You are Great instructor . Thank you for appreciation the importance of the proof based learning and the the ideas behind the formulas and theories . I read that on Tenenbaum text and hope that my prof at class teach it , but for sorry he didn't . For that reason i believe in self learning and don't like the class approach about teaching us the final formulas or how to do that without understanding the underline information and details behind .
@lLl-fl7rv4 жыл бұрын
You make math more interesting, THANK YOU!
@armanchowdhury14153 ай бұрын
I love you
@ankurc5 жыл бұрын
At 5:25 how can you set it equal to zero? I don't understand it. I understand why you want to set it equal to zero but don't how can it be possible to set random stuffs equal to 0?
@moazeldefrawy43794 жыл бұрын
it's an assumption
@lsrinivasan2424 жыл бұрын
All the problems that we solve should also obey that assumption. Then only this method can be used there.
@yigitsezer66964 жыл бұрын
Every solution to the differential equation are a combination of null solutions and particular solutions that come from those. We could impose any assumption that lets us get a particular solution because one particular solution is enough.(I wrote this to make my thoughts clearer.)
@arszbela883724 күн бұрын
why you are soo happy hocam. I cannot stand without smiling when I watch you.
@eunjikim27333 жыл бұрын
Oh my god. You are my professor! You have crazy math technique
@simonribas46253 жыл бұрын
this guy is so happy it makes me happy
@RSVikingJohn7 жыл бұрын
I can understand that condition 1 makes the calculations easier, however what I do not understand is: how this does not alter the solution if a different condition were chosen. Here is my guess: The particular solution to the differential equation is completly unique and therefore there can not be a loss of generality. If that is the case, we can choose a condition as we wish, as long as it does not contradict any of the other conditions set. Is this correct?
@stukov934 жыл бұрын
Now I got the reason why condition 1 makes sense. thx!
@tomatrix75254 жыл бұрын
That is correct. He can choose any condition(s) he wants, and the V(1,2) will change accordingly to satisfy them. He will choose conditions that make the DE solvable in the best way possible, thus the conditions he chose, which are standard and generally rote learned.
@ekeebobs75203 жыл бұрын
Finally some reasoning to the equations! Thanks for clarifying the process.
@michaelhamilton33707 жыл бұрын
In beginning of step 2, what inspires you to think the paricular solution will be v1 times y1 + v2 times y2? That is ... I wonder where did the premise of the nature of the particular solution come from? In other words, what makes you think there are such v1 and v2?
@MalasOndas6 жыл бұрын
The formula for yp is proven in the book
@gerardogabrielnavagomez36693 жыл бұрын
Thats the reason the method is called variation of parameters. Since yh = c1y1 + c2y2, lets assume parameters c1 and c2 are not constant although we can construct the function f(t) by "varying" or making them "variables". This is, change c1 to v1 and c2 to v2. Therefore, yp = v1y1+v2y2. The idea is deeply rooted in linear algebra, wherein you are using y1 and y2 as a vector basis in the space of real, well-behaved, functions like f(t). For this purpose, as indicated, f(t) must be an exponential, polynomial, sine or cosine function. This means, have R as domain and image. I think this is called a Hilbert space.
@SalamaOmarSalama4 жыл бұрын
Sir. Why did we assume that (y1v-1 + y2v-2) equals zero ....? !!!
@DendrocnideMoroides2 жыл бұрын
It is necessary to assume something otherwise you cant solve the differential equation
@AlDir-gc8oh8 ай бұрын
You just searxh for a particular soloution so any soloution ,and thus you look for one that satsfies that condition to simplify stufd
@jemcel03977 жыл бұрын
You should also introduced the shortcut called Wronskian Method. It's very effective for Variation of Parameters.
@alxjones7 жыл бұрын
The Wronskian is just the matrix of coefficients for the linear equation the end. If you solve the two equation system with linear algebra methods, then you will be using the Wronskian. The Wronskian is not a shortcut for what he showed here, it's a result of it.
@blackpenredpen7 жыл бұрын
yea
@letpieau16605 жыл бұрын
Yep, Wronskian is not for here
@nicoletsang8884 Жыл бұрын
How did we come up with the condition that y_1 v_1' + vy_2 v_2' =0 ?
@jehoiakimpillay3424 жыл бұрын
Best explanation I've seen so far
@OVERWATCHfly6 жыл бұрын
This guy is a legend
@earl82954 жыл бұрын
Thank you @blackpenredpen, you solved my problem !
@JoaoPedro-pi9ee Жыл бұрын
Very nice video! Thank you so much!
@alexkotusenkoАй бұрын
Amazing video thank you so much
@linlinyang14715 жыл бұрын
A very nice explanation. Thank you very much.
@blackpenredpen5 жыл бұрын
My pleasure
@MohitShakya90273 жыл бұрын
Thank u so much 🔥🔥🔥🔥😎😎😎
@Billy_987 жыл бұрын
Nice video!
@Apple-sq4wr Жыл бұрын
So useful! Thank you!
@kevinmatagaro53065 жыл бұрын
Awesome, you have been a lot of help.
@danafayez4896 Жыл бұрын
To use this method for higher order differential equation (n>2) we just impose more conditions?
@MisterFunCyNicolas11 ай бұрын
great video ! Why are we allowed to impose condition 1 ?
@sepm73567 жыл бұрын
just to verify, condition 1 would always apply using this method correct? since we didnt need to go further to derive the v's to their 2nd derivatives ? its nice to not derive everything to its second order derivatives with that condition to make it less painful. Thanks for a great explanation!
@iftekharmoksudhridoy22613 жыл бұрын
Awesome sir.
@kevinfung66977 жыл бұрын
I got a question actually.Will Condition 1 always be satisfied??
@GabrielHerediaAcevedo4 жыл бұрын
It's an arbitrarily imposed constraint so that you do not have to deal with second order y terms.
@ozgurgunes13037 жыл бұрын
Perfect explanation
@jazzminalatorre48053 жыл бұрын
The video sound is pretty good, beyond my imagination
@michaelhamilton33707 жыл бұрын
Also -- Thank you for the excellent demonstration!
@rapidreaders77415 жыл бұрын
Sorry I'm not as fast of a learner, but why did you set yp = v1y1 + v2y2?
@algorithmtheory5 жыл бұрын
It's the idea of a superposition of differential equations. So a linear combination of a set of solutions will yield another solution that also satisfies the original differential equation.
@NicolasSchmidMusic4 жыл бұрын
@@algorithmtheory no, yp is not a linear combination of the set of homogenous solutions, otherwise yp would solve the homogenous equation too, which is not the case (yp solves the non-homogenous equation). Here we multiply y1 and y2 by two FUNCTIONS of x v1 and v2. The thing is we chose v1 and v2 so that it satisfies the equality yp = v1y1 + v2y2 and also the condition y1v1' + y2v2' = 0. And that is always possible because with these two functions v1 and v2 that we can chose, we have two degrees of freedom, so we can satisfy two conditions.
@tobechukwublessed4274 Жыл бұрын
Thank you Sir
@maxleague48096 ай бұрын
Holy moly! All I have to do is use formulas!!
@iindifferent7 жыл бұрын
Very good explanation.
@blackpenredpen7 жыл бұрын
Thanks
@justinavaicaityte4720 Жыл бұрын
Does this idea also work for third order differential non-homogenous differential equations?
@carultch Жыл бұрын
Yes. The Wronskian will be a 3x3 matrix, with original functions, derivatives, and second derivatives. Suppose our differential equation has the form: y"'(t) + b*y"(t) + c*y'(t) + d = g(t) Given yh1(t), yh2(t), and yh3(t) as the three fundamental solutions to the Homogeneous differential equation, the particular solution is: yp(t) = integral W1/W * g(t) dt + integral W2/W * g(t) dt + integral W3/W * g(t) dt W is the main Wronskian, with yh1(t), yh2(3) and yh3(t) as its first row, the derivatives as row 2, and the 2nd derivatives as row 3. W1, W2, and W3 are what I call, the Cramer Wronskians, because the theory behind them comes from Cramer's rule. To get W1, replace its first column with the column vector . To get W2, replace the 2nd column with the same column vector, and restore the first column. To get W3, replace the 3nd column with the same column vector, and restore the second column
@pushpanjalinayak27655 жыл бұрын
Thank you so much
@JOMFSE3 жыл бұрын
Feel like I went back 10 years since I got used to the beard
@ugursoydan81874 жыл бұрын
is there a solution to ay"+by'y=0?
@willhippler46426 жыл бұрын
Sick! i love math
@GHOSTrex13244 жыл бұрын
nice thank you
@terrencemadanhi88335 жыл бұрын
Talk of people who are genius talk of this guy
@ЛабораторияДотера2 жыл бұрын
that’s treasure
@محمدالشهري-ظ2ك4 жыл бұрын
I could not apply that for u'+u=x, why?
@dylanfonseca81554 жыл бұрын
That would be a first order linear DE. You can use the integrating factor approach (wich is simpler). :)
@handledbygrace3 жыл бұрын
to understand this guy come prepare, read prior
@fantasyking29194 жыл бұрын
thank u verye much
@chimetimepaprika2 жыл бұрын
Ah yes! Now I see!
@JamesModi-k3q Жыл бұрын
Help me with these problems please dy/dx=y^6_2x^2/2xy^5+x^2y^2 using homogenous method
@myomintun29487 жыл бұрын
please explain .....In which conditions cannot we use undetermined coefficients methods ...
@carultch Жыл бұрын
The function of the dependent variable (usually t) on the right, has to be one of the simple functions that either reduce to zero, or loop back as constant multiples of themselves when differentiated, in order to use undetermined coefficients. Polynomial functions reduce to zero, while exponentials, simple trig, and simple hyperbolic trig, will loop back as constant multiples of themselves. Anything else, that becomes significantly different after a calculus operation, like tangents, secants, and logs, will require variation of parameters.
@myomintun2948 Жыл бұрын
I just forgot what i asked. :) Anyway Thanks indeed@@carultch
@zeeshansalim9314 жыл бұрын
legend
@Thoalfeqargamer4 жыл бұрын
if this doesn't make you love maths i dunno what will :D
@muswayne10513 жыл бұрын
7:01 we do mind 😂
@yanuizenqurezjanjan24495 жыл бұрын
for third order?
@jozinho2210 ай бұрын
Why such a condition 1 ?
@anasselouasdad47382 жыл бұрын
❤️❤️❤️❤️
@sergeisitsnov54732 жыл бұрын
Anda boleh memilih untuk salah satu daripada hadiah di atas
@MessMjF7 жыл бұрын
This was godtier.
@cachah2165 жыл бұрын
god bless u
@johnr18755 жыл бұрын
haha that music at the end is ridiculous. great video nonetheless
@mikevaldez76843 жыл бұрын
The lighting, camera angle create a very poor, low-quality visual image. The over-exposed image makes it difficult to see what is written on the board. Other math channel videos are much more professional than this garbage
@vj512 жыл бұрын
why are you here, give me their channel links
@mikevaldez76843 жыл бұрын
His English is terrible-- poor pronunciation, enunciation, diction, & elocution. He needs to work on articulation.