Spain Math Olympiad | A Very Nice Geometry Problem | 2 Different Methods

  Рет қаралды 4,972

Math Booster

Math Booster

Күн бұрын

Пікірлер: 19
@RobertHering-tq7bn
@RobertHering-tq7bn 21 күн бұрын
This is another possible but more complex way to solve the problem. The main idea is to see all the points coordinates in x and y. Here are the main points... O (0,0) - P (0,1) - B (2,0) - Q (Qx,Qy) and the main question is to find Qx and Qy. Based on the fact that angle PQB is 90°, we have the following relations between x and y: (1) x² + y² = 4 (2) straight line through P and Q: (y-1)/(x-0) = m y = mx + 1 (3) straight line through Q and B: (y-0)/(x-2) = -(1/m) y = -(1/m)x + 2/m (2)/(3): mx+1 = -(1/m)x + 2/m x = (2-m)/(1+m²) This gives with (2) for y: y = (2m-m²)/(1+m²) + 1 = (2m - m² + 1 + m²)/(1+m²) = (2m+1)/(1+m²) Using this in (1) gives... (2-m)²/(1+m²)² + (2m+1)²/(1+m²)² = 4 (5+5m²)/(1+m²)² = 4 5(1+m²)/(1+m²)² = 4 5/(1+m²) = 4 This gives us finally... m = 1/2 And we get with m used in (2) and (3)... (4) y = (1/2)x + 1 (5) y = -2x + 4 In the end we get for Qx and Qy... (1/2)Qx+1 = -2Qx+4 (5/2)Qx =3 Qx = 6/5 and Qy = (1/2)(6/5)+1 = 8/5 So, PQ² = (8/5 - 1)² + (6/5 - 0)² = (3/5)² + (6/5)² = 45/25 = 9/5 and PQ = 3/sqrt(5) and QB² = (0 - 8/5)² + (2 - 6/5)² = 64/25 + 16/25 = 80/25 = 16/5 and QB = 4/sqrt(5) F(PQB) = (1/2)*(3/sqrt(5))*(4/sqrt(5) = 6/5
@prossvay8744
@prossvay8744 Ай бұрын
Draw a circle In right triangle OBP So BP=√5 In right triangle OCP So CP=√5 Let QP=a a√5=1(3) So a=3/√5 So BQ=√(√5)^2-(3/√5)^2=4√5/5 So triangle area=1/2(3√5/5)(4√5/5)=6/5=1.2❤❤❤
@quigonkenny
@quigonkenny Ай бұрын
Extend quarter circle O to a semicircle, with M as the point opposite B on the diameter. As Q is a point on the circumference and ∠BQP = 90°, then by Thales' Theorem, if QP is extended, it will intersect with point M, as BM is a diameter. As OM = OB = 2, ∠POB = ∠MOP = 90°, and OP is common, ∆POB and ∆MOP are fongruent. As ∠OPB = ∠QMO and ∠POB = ∠BQM = 90°, ∆BQM and ∆POB are similar triangles. Triangle ∆POB: OP² + OB² = BP² 1² + 2² = BP² BP² = 1 + 4 = 5 BP = √5 BQ/MB = OP/BP BQ/4 = 1/√5 BQ = 4/√5 QM/BQ = OB/OP QM/(4/√5) = 2/1 = 2 QM = 2(4/√5) = 8/√5 The area of ∆BQP is equal to the area of ∆BQM minus the areas of congruent triangles ∆POB and ∆MOP. Triangle ∆BQP: A = QM(BQ)/2 - OB(OP)/2 - OM(OP)/2 A = (8/√5)(4/√5)/2 - 2(1)/2 - 2(1)/2 A = 16/5 - 1 - 1 = (16-10)/5 = 6/5 sq units
@richardleveson6467
@richardleveson6467 Ай бұрын
I always enjoy your presentations here - your constructions are ingenious and the explanations always clear. Thank you!
@santiagoarosam430
@santiagoarosam430 Ай бұрын
PB²=1²+2²=5--->PB=√5 ---> Potencia de P respecto a la circunferencia =1*1+2=3 =PQ*PB=PQ*√5---> PQ=3√5/5 ---> QB²=(√5)²-(3√5/5)²---> QB=4√5/5 ---> Área PQB=PQ*QB/2=6/5. Gracias y saludos
@michaeldoerr5810
@michaeldoerr5810 Ай бұрын
The area is 6/5 units square. I really appreciate this review of how a circle theorem leads up to similarity by HL in the first method. I think that I finally got the triple understanding of how similarity by HL usually works: First you take the 90 degree angle than the common angle, the triangles that are subtended by the 90 degree angle are similar and at the 4:00 mark, it is clear that the first two letters of the 90 degree angle pair and the first and last letters of the common angle pair are set equal. Then the proportions are substituted to get x^2 and then you subtract from the larger right triangle from the isosceles triangle. As for the second method it makes use of a circle theorem and chord theorem and then Pythagorean Theorem. Both methods make use of the Pythagorean Theorem. Please check out this comment.
@RealQinnMalloryu4
@RealQinnMalloryu4 Ай бұрын
(2^2=4 180°ABC/4 =40.20 2^20.2^10 2^2^10.2^2^5 1^12^5.1^1^1 1^12^1 2^1 (ABC ➖ 2ABC+1) .
@murdock5537
@murdock5537 Ай бұрын
∆MQB → BM = 4 = MO + BO = 2 + 2; PO = 1; sin⁡(MOP) = 1 → PM = PB = √5; BQ = k; PQ = m QMB = PMB = MBP = δ → sin⁡(δ) = √5/5 → cos⁡(δ) = 2√5/5 = (√5 + m)/4 → m = 3√5/5 → MQ = 8√5/5 → area ∆ BQM = (1/2)sin⁡(δ)4(√5 + m) = 16/5 → area ∆ BQP = (1/5)(16 - 10) = 6/5
@Emerson_Brasil
@Emerson_Brasil Ай бұрын
*_3° Método:_* Sejam PQ=a e QB=b. Note que a soma dos ângulos opostos do quadrilátero QBOP é 180°, portanto, QBOP é inscritível. Segue do teorema de Pitolomeu: *PQ×OB + QB×OP=PB×OQ. (1)* Por Pitágoras, no ∆PBO: PB²=OB²+PO²=4+1→PB=√5. observe que agora, que OQ=raio do círculo=2. Usando a equação (1), obtemos: 2a+b=2√5→ *b=2√5-2a* Usando Pitágoras no ∆PQB: PB²=PQ²+QB². Assim, (√5)²=a²+b² 5=a²+(2√5 - 2a)² 5=a²+20 - 8√5a + 4a² 5a² - 8√5a + 15=0. Usando a fórmula para uma equação de 2° grau, temos: ∆=320 - 300=20→√∆=2√5. Daí, a=(8√5 ± 2√5)/10. Assim, a=√5 ou a=3√5/5. Se a=√5, então b=0, absurdo! Pois a,b >0, já que são lados de um triângulo. Logo, a=3√5/5, consequentemente, b=2√5 - 6√5/5=4√5/5. A área do triângulo desejado é dado por a×b/2, isto é, (3√5/5 × 4√5/5)/2=(12×5/25)/2. Finalmente, *6/5.*
@Emerson_Brasil
@Emerson_Brasil Ай бұрын
*_4° Método:_* Sejam PQ=a e QB=b. Note que a soma dos ângulos opostos do quadrilátero QBOP é 180°, portanto, QBOP é inscritível. Traçando a diagonal OQ, temos que os ângulos ∠BOQ=∠BPQ=α (ARCOS CAPAZ). Usando lei do cosseno no ∆BOQ: QB²=QO²+OB² - 2QO×OBcos α b²=2²+2²-2×2×2cos α *b²= 8 - 8cos α (1)* Por Pitágoras, no ∆PBO: PB²=OB²+PO²=4+1→PB=√5. Além disso, cos α= PQ/PB→ *cos α=a/√5 (2)* Usando Pitágoras no ∆PQB: PB²=PQ²+QB². Assim, (√5)²=a²+b²→ *b²= 5 - a² (3)* Substituindo (2) e (3) em (1): 5 - a²= 8 - 8a/√5 a² - 8√5a/5+3=0 × (5) 5a² - 8√5a + 15=0. Usando a fórmula para uma equação de 2° grau, temos: ∆=320 - 300=20→√∆=2√5. Daí, a=(8√5 ± 2√5)/10. Assim, a=√5 ou a=3√5/5. Caso seja a=√5, por (3), teremos b=0, absurdo! Pois a,b >0, já que são lados de um triângulo. Só nos restou a=3√5/5, consequentemente, por (3), temos: b²=5 - (3√5/5)²=5 - 9/5=16/5 b= √(16/5) →b=4/√5. A área do triângulo desejado é dado por (a×b)/2, isto é, (3√5/5 × 4/√5)/2=(12/5)/2. Finalmente, *6/5.*
@giuseppemalaguti435
@giuseppemalaguti435 Ай бұрын
QPB=α..legge del coseno 4=1+(√5cosα)^2-2*1*√5cosαcos(α+arctg2)...sin2α=24/25..Α=(1/2)√5cosα√5sinα=(1/4)5sin2α=6*5/25=6/5
@yakupbuyankara5903
@yakupbuyankara5903 Ай бұрын
6/5=1.2
@Nobody-tu5wt
@Nobody-tu5wt Ай бұрын
6/5
@himadrikhanra7463
@himadrikhanra7463 Ай бұрын
1 square unit ?
@jimlocke9320
@jimlocke9320 Ай бұрын
At about 4:10, Math Booster has found that ΔMOP and ΔMQB are similar. The hypotenuse MB of ΔMQB has length 4. From the Pythagorean theorem, the hypotenuse of ΔMOP has length √5. The areas of similar triangles are related by the square of the ratio of corresponding sides. In this case, take the ratio of the hypotenuses, which is 4/(√5) and square it, giving 16/5. The area of ΔMOP = (1/2)(bh) = (1/2)(2)(1) = 1. Therefore, the area of ΔMQB is (16/5)(1) = 16/5. ΔMOP and ΔBOP are congruent by side - angle - side, so ΔBOP also has area 1. Area ΔBQP = ΔMQB - ΔMOP - ΔBOP = 16/5 - 1 - 1 = 6/5, as Math Booster also found.
@jairoeveliogordillomarin5780
@jairoeveliogordillomarin5780 Ай бұрын
Aplicando teorema de Pitágoras: PB= √5. Tangente OBP= 1/2. Entonces: ángulo OBP= 26.57°. Ángulo PBQ: 180=26.57+90+26.57+PBQ Entonces: ángulo PBQ= 36.86°. Seno 36.86=PQ/√5. PQ= 1.34 u. Coseno 36.86=PQ/√5= 1.79 u Área triángulo PQB= BQ×QP= (1.34×1.79)/2= 1.1993 u².
@batmunkhenkhbaatar9061
@batmunkhenkhbaatar9061 Ай бұрын
I could solve it by myself
@Emerson_Brasil
@Emerson_Brasil Ай бұрын
@batmunkhenkbaatar9061 That's exactly the purpose of the videos! If you can solve it yourself, my dear friend!
Canada Math Olympiad | A Very Nice Geometry Problem
11:24
Math Booster
Рет қаралды 10 М.
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 200 МЛН
Кто круче, как думаешь?
00:44
МЯТНАЯ ФАНТА
Рет қаралды 2,6 МЛН
Motorbike Smashes Into Porsche! 😱
00:15
Caters Clips
Рет қаралды 23 МЛН
Math Olympiad Geometry Problem | You should be able to solve this!
13:53
Russian Math Olympiad | A Very Nice Geometry Problem
14:34
Math Booster
Рет қаралды 124 М.
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 786 М.
BASIC Calculus - Understand Why Calculus is so POWERFUL!
18:11
TabletClass Math
Рет қаралды 239 М.
The Hardest Exam Question | Only 6% of students solved it correctly
17:42
Higher Mathematics
Рет қаралды 205 М.
Spain Math Olympiad | A Very Nice Geometry Problem
9:42
Math Booster
Рет қаралды 6 М.
Human vs Jet Engine
00:19
MrBeast
Рет қаралды 200 МЛН