Dude you make the absolute best Econometrics videos it is insane. Last year we had an extremely hard theory of multiple Regression course and your graduate playlist helped a TON. I recommended your videos to all my friends. Keep up the good work!
@taniaobono9788 жыл бұрын
I normally dont comment on videos, however this was very clear and helpful!! Thank you very much
@mikeysz19725 жыл бұрын
i usually do not comment on comments on videos, however i agree!!
@jakobforslin63014 жыл бұрын
Best teacher out there, thank you for all the clarity you bring
@홍성의-i2y2 жыл бұрын
Usually, it is banned for us to do regression when both Y and X are I(1), because it causes spurious regression. However, co-integration is devised so that we can discern such cases when regression is allowed. In cases they are both I(1), Y_t - \beta * X_t being I(0) means that they share the same pattern (up to constant multiplication) like the downward-dent case in 4:55. Then it is reasonable to think that Y_t and X_t share some sort of correlation, and thereby justifies the use of regression.
@richardwatson34846 жыл бұрын
Great explanation - for a newcomer to econometrics this is is gold
@SpartacanUsuals10 жыл бұрын
Hi Prathana, If a variable has no unit roots it is always 'cointegrated' in a sense with other I(0) variables. Hope that helps! Ben
@sebastiankuhnert363910 жыл бұрын
Great video!!! - thank you!! Made reading some articles a lot easyier. I read "Some Properties of TIME SERIES DATA..." by Granger (1981), where he defines: X_t = I(d) : X_t = a(B)e_t, where (e_t) ~ WN(0, sigma^2), B is the Lagoperator, a(B) = (1-B)^{-d}*a'(B), where a'(B) has no poles and roots in z=0. I don't understand the concept of the introduced "linear filter" a(B). Is it just a linear function?
@chariezwane39813 жыл бұрын
Thank you! This topic made no sense until I gave this a try.
@nackyding7 жыл бұрын
Goddman! Thank you. Thank you, thank you, thank you! Your series has been god send for me. Thank you again!
@pelephantzoo10 жыл бұрын
Your videos are awesome! Keep it up! You're helping a lot of people :)
@subarkahsubarkah9698 жыл бұрын
You are the best, Ben!! I learn a lot from you. Thanks.
@katerinamilaberska6 жыл бұрын
Perfect video, now I understand what a cointegration is! :)
@carlsousa9 жыл бұрын
Great explanation, I always found econometrics hard to understand and you make it super simple, maybe I always had bad econometrics professors. Thanks a lot.
@bang_goo4 жыл бұрын
Very simple and clear. It helps me a lot. Thank you so much!
@ciaranbarrett52549 ай бұрын
Best explanation I have ever heard!
@xphilster2 жыл бұрын
Your videos are still so useful, thank you Ben!
@superstarem7 жыл бұрын
totally awesome thankyou. im looking at options for my doctorate to test for causality between FDI, Exports and GDP so cointegration and causality models are my jam lately but this has been very useful.
@bartas88915 жыл бұрын
Reall good explanations. Thank you for sharing your knowledge !
@shihabuddintareq51514 жыл бұрын
A simple but significant explanation
@notonlygeek5 жыл бұрын
Hi, trying to do french subtitles, at 1:44 he say " witch I(1) .... another" I don't succeed find missing word nor understand the meaning. Many tks for help.
@muhammadirfanislami8183 жыл бұрын
Perhaps its nonstationer at level
@a.moizmaner250411 ай бұрын
Years later still benefiting GBU!
@theochhn75146 жыл бұрын
GREAT explanation! It is very clear!
@ssrouji45074 жыл бұрын
Thank you Ben, excellent !
@TheDominock3 жыл бұрын
Thank you very much, you are glorious! Could you please provide me with a title of a journal article/name of the authors where authors explain the case of using non-stationary variables of order 1 being regressed on each other? I am having difficulties in finding such a journal.
@johnsteedman79372 жыл бұрын
I have the book but still found this useful. An extra column for the denominator might make things crystal clear even though I can see that the book does explain
@louismarcelmpundu85762 жыл бұрын
how can I say thank you for this helpful video? Thank you to make plain as a day what cointegration really mean in simple words!
@MuhammadAsim-fy1qy4 жыл бұрын
Very very clear I must appreciate sir. Thank you so much
@fz914254 жыл бұрын
hello, does beta can be interpreted as the speed of ajustement? is it what we called the ECT( eroor correction term)?
@wenchaowu62048 жыл бұрын
Great video. Very intuitive.
@daanw5 жыл бұрын
Bitcoin stock-to-flow and price?
@modiallo9685 жыл бұрын
Yessir 😎😎😎
@abioduntaiwo84439 жыл бұрын
Hi ben, please what is the weakness of the ARDL method of co-integration.
@sara55555555557 жыл бұрын
Awsome vid! Just have one question regarding I(1). I get that it says that if you differentiate it once then it becomes stationary, am I right in assuming that I(1) in the vid is still "undifferentiated" and non stationary still? If they were both differentiated once then both would be stationary and we wouldn't have a problem, would we? Or am I wrong?
@lrozenwater7 жыл бұрын
Yes, they show the levels of y_t and x_t, not the first-differenced variables
@BansheeX4 жыл бұрын
Thank u Ben Lambert
@pranavkishorbaviskar56886 жыл бұрын
Crisp and clear thanks sir
@lory1988 жыл бұрын
hi Ben, your videos are really great! Just one question concerning the video: if there exists a b such that y_t-bx_t is stationnary. Why don't we say that there exists a and b such that ay_t-bx_t is stationnary (or said differently: why can we always assume that a=1?)
@meisterthea3 жыл бұрын
If beta is a scalar value then surely it would just raise or lower X(t). Why would it create a constant spread with Y(t)?
@eavjones9 жыл бұрын
I'm actually in the life sciences, not economics, but I analyse data from time-lapse experiments. I am looking at a relationship between an X_t and a Y_t in my time series. Do you think I could apply co-integration/Dickey-Fuller to this? I actually have 3 different time-lapse experiments (with about 10 times points per experiment). Can I just analyse all the data together? By the way, your movies are amazing. You make difficult statistical knowledge very accessible.
@josefinaramos65342 жыл бұрын
what happens if 2 series do not look like they cointegrate but when looked at in first differences you can see they do'?
@dhruvkotecha88438 ай бұрын
Very helpful, thank you!
@itthipong11 жыл бұрын
Dear Mr.LamBert. Suppose that I have more than one independent variable say x1 and x2. What if I find that y and x1 are I(1) but x2 is I(0)? Can they be cointegrated despite their different integration orders? Am I allowed to estimate the ECM model between y x1 and x2? Could you please explain to me? Regards.
@SpartacanUsuals11 жыл бұрын
Hi, good question. Yes, in theory there is no problem here, so long as y and x1 are cointegrated (in the presence of x2). However, I would be very careful about doing this sort of regression for fear of it demonstrating a spurious relationship between variables. Best, Ben
@josuecosta8945 жыл бұрын
god bless you!! you helped me a lot, thanks!!
@malikaallali29249 жыл бұрын
Great video thank you so so much I need some information about cointegration thanks a lot that's great
@VainCape4 жыл бұрын
another way to put it: there exists a linear combination of yt, xt that is I(0)
@JugaadTech4 жыл бұрын
Great explanation, Just could not understand I(0) or I(1) part, If someone can point me in right direction for this, that'll be great
@yangliu56527 жыл бұрын
Very useful! Thank a lot!
@PrarthanaRaviKumar10 жыл бұрын
Thank you for these videos :) :) I was wondering, if a variable has no unit roots, does it mean it cant be cointegrated with any variable??
@aishiaratrika3 жыл бұрын
If it doesn’t have unit root, this indicates that the time series variable is stationary. So it can't be cointegrated since conintegration involves two non-stationary processes.
@fz914254 жыл бұрын
in the first example where the two series aren't cointegrated because of the two random walks, can we interpret the random walk as breakpoints ??
@fz914254 жыл бұрын
and the correct them by adding dummy variables to the model ?
@chrislam134111 жыл бұрын
but what is the meaning of I(1) and I(0), i didnt really catch it..
@SpartacanUsuals11 жыл бұрын
Hi Chris, I(1) means that you need to take the 1st difference of a series in order to make it stationary. I(0) means that the series is already stationary. Hope that helps! Ben
@chaozhang586410 жыл бұрын
very helpful! thx Ben.....
@EduardoGarcia-if2kv4 жыл бұрын
I am hooked!!!
@joebedford41577 жыл бұрын
Thanks Ben.
@ivankissiov2 жыл бұрын
Thank you!!!
@fatherle3 жыл бұрын
the best expaination
@flamingflamingo40214 жыл бұрын
What's I(1) / I(0) here?
@Anna-zi6fy7 жыл бұрын
Hi Ben! Thanks for the video! What is I(1) here?
@radufffp7 жыл бұрын
The date contains one (1) unit root. This means the data, in order to be stationary, has to be differentiated one (1) time.
@sara55555555557 жыл бұрын
But then we are supposed to assume that the series have been differetentiated yet? Otherwise the data would be stationary right?
@fazoo10005 жыл бұрын
Very Much help ful Video
@KeddingtonKKB_Official4 жыл бұрын
What's I(1)?
@subhransusekhar2897 жыл бұрын
Why we call the non stationary series a I(1)?
@mohdbahakim7 жыл бұрын
I(1) means they have a unit root meaning they are not stationary
@mohdmaudehero76027 жыл бұрын
what does the I(1) or I(0) in this video denote thank you
@mohdmaudehero76027 жыл бұрын
i get it
@shaguftashabbar49828 жыл бұрын
very helpful!
@hassanaber3925 жыл бұрын
very helpful..thanx
@ben730106 жыл бұрын
Thanks for this
@zoozolplexOne2 жыл бұрын
cool !!!
@ahmedtrabelsi35895 жыл бұрын
i love you
@Jingjing-w7e2 ай бұрын
救了大命了(尝试在一周内拯救我的final
@sport81332 жыл бұрын
velly velly noice!
@thaitazzz10 жыл бұрын
what is formula of beta ?
@noueruz-zaman78947 жыл бұрын
I have these for my masters in finance program and in class I don't get anything, it seems like I am Chinese. .lol
@홍성의-i2y2 жыл бұрын
en.wikipedia.org/wiki/Order_of_integration definition of I(d)
@Sydney_Anuyah2 жыл бұрын
I normally dont comment on videos, however this was very clear and helpful!! Thank you very much