Statistik: Zentraler Grenzwertsatz - FernUni Hagen

  Рет қаралды 50,407

Stats Tutor

Stats Tutor

Күн бұрын

Пікірлер: 46
@albertbarwich2472
@albertbarwich2472 7 жыл бұрын
Kommentiere normalerweise nie ein Video aber der zentrale Grenzwertsatz ist einfach super verständlich und ausführlich erklärt. Danke für die Arbeit
@_MaryStern
@_MaryStern 3 жыл бұрын
noch nie so eine gute erklärung von irgendwas gehört, danke
@charlottemathilda4632
@charlottemathilda4632 3 жыл бұрын
Bomben Video 😍 hilft mir gerade vor der Statistik Klausur in meinem Psychologiestudium
@lennartvaneeden4208
@lennartvaneeden4208 11 ай бұрын
Die Erklärungen von dir sind echt der Hammer! Danke dafür, das hilft mir so sehr!
@sifagzn2427
@sifagzn2427 2 жыл бұрын
Super Video, direkt Verstanden 👍🏽😁.Danke für Ihre Arbeit
@richardmaidorn2439
@richardmaidorn2439 3 жыл бұрын
Sie sind der erste dessen Videos zu Statistik WIRKLICH hilfreich sind !! Sie haben mir sehr viel Arbeit erspart danke!!!
@sunnyklein3667
@sunnyklein3667 5 жыл бұрын
Vielen Dank für das tolle Video. Das war wirklich super verständlich und hilfreich :)
@PatPush
@PatPush Жыл бұрын
Tolles Beispiel und exzellent übersetzt in eine Sprache für Laien 😊
@franz_hans_mayr
@franz_hans_mayr 6 жыл бұрын
Perfekt erklärt - DANKE
@muli8282
@muli8282 3 жыл бұрын
Alter, übertrieben hilfreich. Danke!!
@ChristophLübbert
@ChristophLübbert 3 ай бұрын
Großartig erklärt.
@honigkuchen1659
@honigkuchen1659 4 жыл бұрын
ENDLICH VERSTANDEN, DANKE!!
@WolfgangDibiasi
@WolfgangDibiasi 4 жыл бұрын
Vielen Dank!
@Knowledge_Nuggies
@Knowledge_Nuggies 7 жыл бұрын
Grundsätzlich alles super erklärt und vielen Dank! Nur eine Sache verstehe ich nicht richtig... Sie sagen, je größer die Stichprobe desto kleiner die Standardabweichung und desto genauer die Normalverteilungskurve.. ABER.. Im letzten Video haben Sie erklärt, dass die Standardabweichung der Grundgesamtheit immer größer ist als die der Stichproben, weshalb man in der Inferenzstatistik die Varianzkorrektur durchführt mit n-1 im Nenner (kleinerer Nenner->größerer Quotient)... Ist das nicht widersprüchlich? Oder wird die Standardabweichung mit zunehmendem Stichprobenumfang immer kleiner bis sie dann...bei Erreichen von n=N plötzlich sprunghaft größer wird?
@statstutor
@statstutor 7 жыл бұрын
Die Stichproben-Standardabweichung ist ein Schätzwert für die Standardabweichung der Grundgesamtheit. Ihre Größe hat nichts (oder nur wenig) mit dem Stichprobenumfang zu tun. HIER geht es um die Verteilung der Stichproben-Mittelwerte. Das ist die Verteilung nur der MITTELWERTE der Stichproben, das hat nichts mit der Standardabweichung innerhalb der Stichprobe zu tun. DIESE Standardabweichung, also die der Verteilung der Stichproben-Mittelwerte, wird bei zunehmendem Stichprobenumfang kleiner.
@ReddDevil1982
@ReddDevil1982 8 жыл бұрын
Gut erklärt !
@sarahthoni8046
@sarahthoni8046 11 ай бұрын
Warum ist denn das so, dass sich die Mittelwerte von Stichproben unabhängig von der Form der Grundgesamtheit immer normal verteilen? Womit hängt das zusammen?
@statstutor
@statstutor 11 ай бұрын
Das ist eine mathematische Gesetzmäßigkeit. Eine mathematische Herleitung weiß ich nicht. Aber ich denke nicht, dass man das an der Hagen wissen muss, zumindest sofern man nicht Mathematik studiert.
@Banefane
@Banefane Жыл бұрын
Super erklärt!
@patrickamstad5091
@patrickamstad5091 7 жыл бұрын
@ 7.58: "... je grösser der Stichprobenumfang desto steiler die Kurve und desto perfekter die Normalverteilung." Wie sieht das nun im Grenzfall aus? Für einen Stichprobenumfang von unendlich würde diese Aussage dann nicht mehr zutreffen oder täusche ich mich? Herzlichen Dank für Ihre Videos
@statstutor
@statstutor 7 жыл бұрын
Naja, das ist gewissermaßen eine theoretische Frage. Für viele, viele Ausgangsverteilungen gilt der ZGS sowieso nur näherungsweise. Aber wenn ich diese Aussage im Grundsatz durchdenke, gilt sie uneingeschränkt, weil es einen unendlichen Stichprobenumgang nicht geben kann :-)
@stanislauskloster2560
@stanislauskloster2560 Жыл бұрын
Top! Vielen Dank
@RyanneSchneider-ki5ok
@RyanneSchneider-ki5ok 4 ай бұрын
Sehr gute Erklärung aber muss beim Zentralen Grenzwertsatz nicht gelten, dass alle Zufallsvariablen den gleichen Erwartungswert, die gleiche Varianz und auch die gleiche Wahrscheinlichkeit haben. Weil in dem Beispiel sind die Wahrscheinlichkeiten ja unterschiedlich
@statstutor
@statstutor 4 ай бұрын
Verstehe nicht ganz was du meinst. Die WSKen für die einzelnen Augenzahlen sind unterschiedlich, aber die WSK-Verteilung ist insgesamt bei jedem Wurf dieselbe.
@matthiastz1378
@matthiastz1378 7 жыл бұрын
Super erklärt, vielen Dank!
@abdallahtahboub4634
@abdallahtahboub4634 4 жыл бұрын
Perfekt erklärt.
@eleminator_pro
@eleminator_pro 2 жыл бұрын
Super video!!
@petermueller69
@petermueller69 3 жыл бұрын
WICHTIG müssen es arithmetische mittelwerte sein oder können es auch andere? (welche?)
@statstutor
@statstutor 3 жыл бұрын
Der zentrale Grenzwertsatz funktioniert auch für andere Kennwerte, aber für diesen Kurs ist nur der Mittelwert relevant :-)
@petermueller69
@petermueller69 3 жыл бұрын
@@statstutor ok danke :D ich gehör aber auch nicht zur fernuni hagen, bin einer von denen die so drauf gelandet sind
@maximilianw.8488
@maximilianw.8488 2 жыл бұрын
Bedeutet das dann auch, dass die Varianz mit wachsenden "n" schrumpft ?
@statstutor
@statstutor 2 жыл бұрын
Die Varianz der Verteilung der Stichproben-Mittelwerte ist kleiner bei einem größeren n, ja :-)
@Nick.Dionico
@Nick.Dionico Жыл бұрын
Mäßig immer die Mitelwerte der Stichprobe solange Daten identisch und unabhängig verteilt ergeben eine Normalverteilung, danke
@IceBug1337
@IceBug1337 2 жыл бұрын
Wenn man n=1 wählt, bekommt man dann die echte Verteilung?
@statstutor
@statstutor 2 жыл бұрын
Wenn man nur einen Wert zieht (nur einmal würfelt), dann entspricht die WSK-Verteilung für diesen einen Wert der Ausgangsverteilung. Also ja :-)
@IceBug1337
@IceBug1337 2 жыл бұрын
@@statstutor danke.
@saveriocognatti4980
@saveriocognatti4980 4 жыл бұрын
Danke
@Fabse197
@Fabse197 5 жыл бұрын
Danke !!
@christinak.5586
@christinak.5586 5 жыл бұрын
Sehr gut erklärt, danke! Aber es ist ein Kriterium des Zentralen Grenzwertsatzes, dass n groß ist, man sagt 50 oder größer.
@statstutor
@statstutor 5 жыл бұрын
Bei den Hagener Wiwis gilt eine Grenze von n=30, wie in den folgenden Videos erklärt :-) kzbin.info/www/bejne/fHy7ZWppn9Blm8U kzbin.info/www/bejne/oqTGZmSif7Bpnsk
@Olibrue
@Olibrue 4 жыл бұрын
@@statstutor Gilt dies auch für den Erwartungswert wie in diesem video da ja die Stichprobengroesse hier nur n=4 ist? Ich weiss ja in vielen Fällen wie viele unterschiedliche Stichproben, von einem bestimmten Umfang k, ich aus einer GG ziehen kann, mittels Binomialkoeffizient, wenn diese Anzahl der Möglichkeiten > 30 ist, ist dann kann ich doch annehmen das der Erwartungswert einer Zufallsstichprobe, unabhängig von der Ausgangsverteilung normalverteilt ist oder? Ansonsten würde der ZGW hier doch nicht gelten da n
@statstutor
@statstutor 4 жыл бұрын
Ja, es ist eine etwas vereinfachte Darstellung, hier geht es erstmal nur um die grundsätzlich Funktionsweise, in den Folgevideos wird das noch etwas präzisiert.
@markuswerner7271
@markuswerner7271 4 жыл бұрын
Gilt der grenzwertsatz für alle Verteilungen approximativ?
@statstutor
@statstutor 4 жыл бұрын
Fast alle. Als Gegenbeispiel sei mal eine Ausgangsverteilung mit nur 3 verschiedenen Werte genannt. Hier kann bei der Verteilung der Stichproben-MW natürlich keine Normalverteilung rauskommen, egal wie groß die Stichprobe ist.
@markuswerner7271
@markuswerner7271 4 жыл бұрын
@@statstutor Dieser Satz ist doch einfach die Standardisierung oder - formeltechnisch oder?
@statstutor
@statstutor 4 жыл бұрын
Was meinst du? Ich verstehe die Frage nicht.
Zentraler Grenzwertsatz Teil 2 - FernUni Hagen
6:35
Stats Tutor
Рет қаралды 18 М.
Zentraler Grenzwertsatz (ZGWS) - Erklärung + Aussage
13:53
Algebraba
Рет қаралды 7 М.
MY HEIGHT vs MrBEAST CREW 🙈📏
00:22
Celine Dept
Рет қаралды 89 МЛН
Mom had to stand up for the whole family!❤️😍😁
00:39
This dad wins Halloween! 🎃💀
01:00
Justin Flom
Рет қаралды 36 МЛН
Der Zentrale Grenzwertsatz und die Normalverteilung
30:41
Weitz / HAW Hamburg
Рет қаралды 20 М.
Korri erklärt: Zentraler Grenzwertsatz
12:29
Korri der Korrelationskoala
Рет қаралды 1,2 М.
Der zentrale Grenzwertsatz  von Lindeberg-Lévy
14:17
stochastikclips
Рет қаралды 1,3 М.