Khan, you are literally the reason I went from cal 1- to linear and diff. You are the best!
@broudwauy7 жыл бұрын
Awesome explanation. Remembering that the cross product was the area of the parallelogram defined by the two vectors was an absolute revelation. I had absolutely no idea why the fundamental vector product showed up in surface integrals.
@raydencreed15246 жыл бұрын
Inconspicuous Bear Wrestler If you want something “fundamental”, then the cross product is not a good choice. It’s defined only in three dimensions. The wedge product, on the other hand, is a much more natural form of the cross product and can generalize to any number of dimensions you want!
@DiomedesStrosMkai11 жыл бұрын
That's why Khan is awesome.. A lot of the time my frustration comes when the book just skips a step and leaves me thinking '"what the hell?". Usually it's explained somewhere, but it's always off the cuff or several chapters back. This way it's *thoroughly* explained.. I'm not missing *anything*. Every piece of the puzzle is shown
@gianlucacastro52814 жыл бұрын
That was the only thorough explanation I could find as to way the surface integral takes this cross product the way it does, thank you!!
@malefetsanekoalane45492 жыл бұрын
I have finally figured out what makes your explanations so great. You answer questions before they are asked. You replace computational ability with deep understanding,which is education for life. May you be spared for other generations.
@1Man2Go12 жыл бұрын
dude..i do not know how much you're getting paid for this.. but it's not enough.. how you explained this is outright brilliant. something my teachers always fall short of.
@wontpower7 жыл бұрын
The cross product in the integral reminds me of the Jacobian. The area of dsdt doesn't quite match up with the surface area of the differential surface area in x y and z, so you need to multiply by abs(dr/ds x dr/dt) in order to account for that difference.
@vaggs754 жыл бұрын
Okay short explaination. If we take the double integral of a function that is dependent on three variables, then we get the volume of a shape. This shape is a 3d shape. the bottom of the shape is the projection of the surface onto the zy plane, just like if we had a torch and lit it from exactly above. the top of the shape are the "hills that are formed" from the values of the fucntions. Now what the surface integral calculates is the bottom of the same shape, but with a twist. the top stays the same but the bottom becomes the projection onto another surface that is not the zy plane but rather maybe a diagonal surface or something of that sort.
@vukstojiljkovic71814 жыл бұрын
Thank you for this. They never did something like this, they just introduced it and started calculating.....
@oneinabillion6544 жыл бұрын
Sal, I remember in linear algebra u said that. U will be remembered.
@DavideSLiuni4 жыл бұрын
This man is the only reason of why I'm passing calculus in university
@HotPepperLala14 жыл бұрын
God seriously needs to create more people like you
@legendarysannin6513 жыл бұрын
Please connect your videos with a link on the screen so we can jump from the video before. Very good explanation!
@sandracordoba6090 Жыл бұрын
You are indeed a brilliant person when it comes to explain this concepts. All my respect
@oyster4545 Жыл бұрын
🥰🥰🥰Sal you deserve noble prize ❤❤
@TennisGvy13 жыл бұрын
@Liaomiao That's if you are integrating a function in two directions. Integrating a function adds another dimension so to speak.
@rheejoan13 жыл бұрын
"now lets go do this for t!!!...i am running out of colors..." Love this man
@jitulborah_102 жыл бұрын
the 3d reference khan made is beautiful . 😊
@fernandolk4536Ай бұрын
This can be used to explain the animal transmutation and the underlying rationale of why the Nazi killed specifically.
@lucidmath54812 жыл бұрын
Sal can you please do some vids on intuitively explaining the volume integral?
@mchegrmchegr29024 күн бұрын
Very informative. Simply excellent.
@pedrogaleano67224 жыл бұрын
Man how come 39 people not like this video? Thank you very much Sal!
@gotnerdy12 жыл бұрын
Thanks for this and also making the video downloadable. Also what software/hardware are you using for this?
@FlippyBrown6 жыл бұрын
Sir, am I right to say that every single point on the region is associated to a parallelogram. And we are adding all the parallelograms(its area) associated to every single point on the region, in order to find the surface area?
@raydencreed15246 жыл бұрын
Nicholas That sounds right to me :)
@ryanmonte14 жыл бұрын
Yup. It's in a 2nd year calculus class at my university.
@mrbrohere3 жыл бұрын
What are doing after university?😀
@VinothKumar-qo7ry7 жыл бұрын
U are one f the excellent Proff.. I seen
@anmolabhayjain97215 жыл бұрын
Can anyone provide me with an explanation as to why during bijective transformation the boundary surface of one closed curve forms the boundary surface of the other closed curve or closed volume? That is why the boundary in u-v plane is also the boundary in x-y(or x,y,z for closed volume) plane of the transformed curve. Also assume that the transformation has a continuous first partial derivative over u and v.
@haroldh66786 жыл бұрын
Man... just amazing... just amazing
@Barak31415910 жыл бұрын
You sir are amazing! You teach so well and in so many topics and I can just thank you infinite amount of times!
@MatthewFricke13 жыл бұрын
@abhi99ps people use different notations for magnitude
@haidynagi73147 жыл бұрын
Solve integration of. X^2/(x^4 +x^3 -1)
@xandersafrunek21513 жыл бұрын
This series of videos is highly underrated.
@hakuchaku2710 жыл бұрын
this must be longest video of khan academy
@ShashankShekhar-de4ld8 жыл бұрын
thanks for giving this great intuition
@moszczynskieng12 жыл бұрын
Another fantastic vector calculus video from Sal Khan! Many thanks!
@bangaloremathematicalinsti53514 жыл бұрын
One of the fantastic Explanation, Kudos to the Professor :)
@zh141213 жыл бұрын
wow thanks for helping me with the fundamentals surface integrals:)
@Liaomiao13 жыл бұрын
why are we doing a double integral? all the vid saids was that we're going in 2 directions. But all the other times we've used double integrals is to find a volume under a surface...
@intellagent76226 жыл бұрын
makes sense now thanks
@Sam-dc9bg10 жыл бұрын
Thank you! Wow this was a good introduction.
@dhimanroy16718 жыл бұрын
The third function may be charge density.
@山卂丂丂山卂5 жыл бұрын
Khan academy is the best
@Think0Like0Cheese9 жыл бұрын
Thank you so much !!
@GlorifiedTruth13 жыл бұрын
Thanks again, Sal.
@smellypotatoes22926 жыл бұрын
Hi thanks to your videos I learnt calculus at 6th grade
@bheemeshbommireddy48076 жыл бұрын
LETS STOP ARTICLE 13 sure bud
@thegoonist14 жыл бұрын
wow is this university level? ive never encountered this concept before
@coolinglifee12 жыл бұрын
you teach really good!
@Cyclingdino12 жыл бұрын
I have one question, when we establish the domain of the parameters (s,t) , do we have to make sure the set of values is convex or not at all? I'd appreciate it if anyone could answer. Thank you
@jingxie312612 жыл бұрын
which one is "the last video" referred at the beginning?
@ausaramun3 жыл бұрын
Parial Derivatives of vector-valued functions. (I know...a little late...)
@anonymous_42763 жыл бұрын
@@ausaramun yeah. It's a "little" late.
@sakki33783 жыл бұрын
@@ausaramun just a little lol
@yvonneho8763 жыл бұрын
@@sakki3378 a tiny little bit
@agrajyadav29512 жыл бұрын
@@yvonneho876 miniscule (btw this reply might be a teeny tiny bit late as well)
@bladox9715 жыл бұрын
good luck guys
@jingxie312612 жыл бұрын
Thanks!
@TheAllboutwin13 жыл бұрын
@karkrashful someone's missing something inside.
@lizjakubowski13 жыл бұрын
Can someone explain why the area of each parallelogram is given by the magnitude cross product TIMES ds dt? i understand the magnitude of the cross product, wouldn't that itself give the area of each parallelogram, and therefore the area of the surface when integrated? are ds dt representative of the tiny depth of that parallelogram?
@y0n1n1x3 жыл бұрын
The dislikes are from color blinds
@jea108012 жыл бұрын
absolutely amazing!!!
@mandeep124412 жыл бұрын
truly helpful!
@parthasarathym18825 жыл бұрын
I wonder why d(sigma) is not just equal to (dr/dt)X(dr/dt)
@hastyz73255 жыл бұрын
the magnitude of the cross product of two parellel vectors is 0. that wont span the surface
@liquidstl14 жыл бұрын
@rachmaniralf you dont need differential equations or linear algebra?
@SotraEngine44 жыл бұрын
is the partial cross product the Jacobian determinant?
@adoado1614 жыл бұрын
@thegoonist: It's multivariable calc, so most likely. :)
@norwayte14 жыл бұрын
Very good. Keep on going.
@mrbrohere3 жыл бұрын
Hey! How's life going after 11 years?
@eljapi93466 жыл бұрын
AMAZING
@christofferbouwer80579 жыл бұрын
He sounds like James Spader at times
@akshatjindal68515 жыл бұрын
legend
@abhi99ps13 жыл бұрын
Shouldn't you put a double absolute value symbol for magnitude
@raydencreed15246 жыл бұрын
abhi99ps It doesn’t matter. If you know what is meant by the symbols, then being anal about formalities like that isn’t going to help anyone
@speedsterfilms29924 жыл бұрын
songs to sleep to XD
@吳柏慶-t9l2 жыл бұрын
make sense nice
@vidhyalakshmim761611 жыл бұрын
Which is the last video that he is referring to?
@DecaSpace12 жыл бұрын
I feel that my scholarships, grants and money go to college or classroom that doesn't even explain this content as clear and well as a free KZbin video. I'm starting to really accept the idea that college education is overrated. You are just paying thousands of dollars to "certify" you - sometimes not even teach you well.
@mrfrankincense10 жыл бұрын
What playlist is this in?
@zuesr32778 жыл бұрын
Calculus playlist
@binthui10 жыл бұрын
what's the video before this one :((?
@TheSunshineRequiem10 жыл бұрын
partial derivatives of vector valued functions
@zuesr32778 жыл бұрын
It's about partials derivative of the vector valued functions.
@romantorres10938 жыл бұрын
im watching this in my class while i have a test wish me luck ( my test is 2 hours long)
@sabiansmasher20009 жыл бұрын
Why would I need to know this for civil engineering...such b.s. Well explained though!
@emlmm887 жыл бұрын
Flux and surface integrals are imperative to understanding continuum mechanics topics (like crack propagation) and heat transfer processes between materials.
@Andrew6James5 жыл бұрын
Given we have a square in the 2d space, why when we look at the volume in the 3d space do the lines now become curved?
@Harshhaze5 жыл бұрын
The 2D graph is looking from the top down, and you can't see the curves on tube 3D graph from above
@That_One_Guy...4 жыл бұрын
That's because they lies on 2 different planes (actually there's no special reason that the path in x,y,z is curved. It could also be a square too) and the fact that t and s variables are parametrizing ("writing") the path that lies on x,y,z plane but those 2 variable doesn't lies on that plane. The t,s variable graph form a square because you let one variable constant, another varies, and you also limit the value that the varying variable can take, meanwhile t,s variables form a curved path on x,y,z because they form 3 different 2 variables function (what i meant mathematically : x = f(t,s), y = g(t,s), z = h(t,s) ). Because this is a parametrized path, then x,y,z variables could be independent or dependent on each other, if z dependent on y and x then it forms a surface (z = h(t,s) = a(x,y) = a(f(t,s), g(t,s))
@That_One_Guy...4 жыл бұрын
Example for 2D parametrization : A circle can be formed by : x = cos(t), y = sin(t) On xt plane, the equation form a *cosine graph*, on yt plane it form *sine graph*, but on xy plane it form a *circle*. Proof : t = arccos(x) (or arcsin(t)) => y = sin(arccos(x)) We know that cos(arccos(x)) = x = x/1, using pytaghorean and sine definition : sin(arccos(x)) = sqrt(1-x^2)/1 = sqrt(1-x^2) y = sqrt(1-x^2) => x^2 + y^2 = 1
@That_One_Guy...4 жыл бұрын
Unfortunately we can't always express parameter function as function in term of x/y/z or some of them , so we just leave them as function of some variable t,s, whatever variable (as input) where x/y/z is the output variables
@k1rv0lak7 жыл бұрын
I understand this stuff and I'm an infant... What is wrong with me???
@anonymoustraveller22547 жыл бұрын
DIv haha , the comment you trolled was just above your comment😂
@Abhijitsings073 ай бұрын
Ur no more an infant now.
@nickvenanzi160711 жыл бұрын
what program do u use
@xxxcoolboyxxx13 жыл бұрын
@adamgil91 why does it matter?
@yanxu69079 жыл бұрын
can u add subtitle
@HL-iw1du5 жыл бұрын
6:31 “diffrential”
@vtron98327 жыл бұрын
The only thing I know which I regret saying is that Sal sucks at making nice looking graphs
@MrLeifArnesen13 жыл бұрын
Would you like to take my calc 3 final?
@FlowFusionMusic13 жыл бұрын
@rinwhr people make people make people.
@beiberu2 жыл бұрын
Wow
@jakiasultanajui45887 жыл бұрын
can someone explain why this double integral .
@PopularityTroll7 жыл бұрын
there are two variables
@wontpower7 жыл бұрын
When you integrate over the area of the region, you're really integrating over dsdt
@beckhamroyjenkins4223 Жыл бұрын
4:22 the transformed surface looks like lips
@zuesr32778 жыл бұрын
I now know calculus and linear algebra with finance statistics economics and probability and I am at 9th grade is something wrong with me. Is it OK.
@kendallcarter34918 жыл бұрын
That's an astounding thing in 9th grade I struggle in algebra alone.
@victorian4j13 жыл бұрын
2 ppl dislike this video cause they failed their exams.. :(
@JustAnotherPers0n11 жыл бұрын
looks like smooching lips 4:40
@pebble25295 жыл бұрын
JustAnotherPers0n ikr
@Nutterbutterz9511 жыл бұрын
Too damn hard!
@allenoh156911 жыл бұрын
I am not a huge fan of Anthony Tromba.
@DakaloMudau-j9cАй бұрын
am i the only one who sees the joker?
@dillonberger403610 жыл бұрын
I don't mean to be pedantic, but the graphs you used at 2:50 don't quite match up. I understand and follow what you're doing completely, but shouldn't your axes on the right graph be labeled s, t, and z?
@dillonberger403610 жыл бұрын
Or perhaps there ought to be a condition such that x=s and y=t.
@magicguy198810 жыл бұрын
Dillon Berger He was exploring how the st-plane is mapped to 3D space using r(s, t) as a position vector function for some surface. It's conventional to label 3D axes as x, y and z
@gus-padovany10 жыл бұрын
On the 3D space the x-axis is not the same as the s-axis and the y-axis is not the same as the t-axis. x y and z are functions of s and t, as he pointed out. f( x(s,t), y(s,t), z(s,t)) . It's a transformation, they're not the same.
@raydencreed15246 жыл бұрын
Dillon Berger No, apparently you mean to be wrong.
@aidantdavis8 жыл бұрын
I understand this stuff in 7th grade... What is wrong with me???
@ich123binsimmernoch8 жыл бұрын
+aidantdavis be happy about it
@hl72978 жыл бұрын
You have superpower, go find Prof. X
@rizvanahmedrafsan7 жыл бұрын
at 7th grade most of us were attention whores xD
@financewithsom4857 жыл бұрын
Great
@abdallahableel43737 жыл бұрын
You're gonna be getting straight A's in college . lol I'm 20 & i still youtube this