Introduction to the surface integral | Multivariable Calculus | Khan Academy

  Рет қаралды 459,938

Khan Academy

Khan Academy

Күн бұрын

Пікірлер: 134
@whoisbobby3
@whoisbobby3 8 жыл бұрын
Khan, you are literally the reason I went from cal 1- to linear and diff. You are the best!
@broudwauy
@broudwauy 7 жыл бұрын
Awesome explanation. Remembering that the cross product was the area of the parallelogram defined by the two vectors was an absolute revelation. I had absolutely no idea why the fundamental vector product showed up in surface integrals.
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Inconspicuous Bear Wrestler If you want something “fundamental”, then the cross product is not a good choice. It’s defined only in three dimensions. The wedge product, on the other hand, is a much more natural form of the cross product and can generalize to any number of dimensions you want!
@DiomedesStrosMkai
@DiomedesStrosMkai 11 жыл бұрын
That's why Khan is awesome.. A lot of the time my frustration comes when the book just skips a step and leaves me thinking '"what the hell?". Usually it's explained somewhere, but it's always off the cuff or several chapters back. This way it's *thoroughly* explained.. I'm not missing *anything*. Every piece of the puzzle is shown
@gianlucacastro5281
@gianlucacastro5281 4 жыл бұрын
That was the only thorough explanation I could find as to way the surface integral takes this cross product the way it does, thank you!!
@malefetsanekoalane4549
@malefetsanekoalane4549 2 жыл бұрын
I have finally figured out what makes your explanations so great. You answer questions before they are asked. You replace computational ability with deep understanding,which is education for life. May you be spared for other generations.
@1Man2Go
@1Man2Go 12 жыл бұрын
dude..i do not know how much you're getting paid for this.. but it's not enough.. how you explained this is outright brilliant. something my teachers always fall short of.
@wontpower
@wontpower 7 жыл бұрын
The cross product in the integral reminds me of the Jacobian. The area of dsdt doesn't quite match up with the surface area of the differential surface area in x y and z, so you need to multiply by abs(dr/ds x dr/dt) in order to account for that difference.
@vaggs75
@vaggs75 4 жыл бұрын
Okay short explaination. If we take the double integral of a function that is dependent on three variables, then we get the volume of a shape. This shape is a 3d shape. the bottom of the shape is the projection of the surface onto the zy plane, just like if we had a torch and lit it from exactly above. the top of the shape are the "hills that are formed" from the values of the fucntions. Now what the surface integral calculates is the bottom of the same shape, but with a twist. the top stays the same but the bottom becomes the projection onto another surface that is not the zy plane but rather maybe a diagonal surface or something of that sort.
@vukstojiljkovic7181
@vukstojiljkovic7181 4 жыл бұрын
Thank you for this. They never did something like this, they just introduced it and started calculating.....
@oneinabillion654
@oneinabillion654 4 жыл бұрын
Sal, I remember in linear algebra u said that. U will be remembered.
@DavideSLiuni
@DavideSLiuni 4 жыл бұрын
This man is the only reason of why I'm passing calculus in university
@HotPepperLala
@HotPepperLala 14 жыл бұрын
God seriously needs to create more people like you
@legendarysannin65
@legendarysannin65 13 жыл бұрын
Please connect your videos with a link on the screen so we can jump from the video before. Very good explanation!
@sandracordoba6090
@sandracordoba6090 Жыл бұрын
You are indeed a brilliant person when it comes to explain this concepts. All my respect
@oyster4545
@oyster4545 Жыл бұрын
🥰🥰🥰Sal you deserve noble prize ❤❤
@TennisGvy
@TennisGvy 13 жыл бұрын
@Liaomiao That's if you are integrating a function in two directions. Integrating a function adds another dimension so to speak.
@rheejoan
@rheejoan 13 жыл бұрын
"now lets go do this for t!!!...i am running out of colors..." Love this man
@jitulborah_10
@jitulborah_10 2 жыл бұрын
the 3d reference khan made is beautiful . 😊
@fernandolk4536
@fernandolk4536 Ай бұрын
This can be used to explain the animal transmutation and the underlying rationale of why the Nazi killed specifically.
@lucidmath5481
@lucidmath5481 2 жыл бұрын
Sal can you please do some vids on intuitively explaining the volume integral?
@mchegrmchegr290
@mchegrmchegr290 24 күн бұрын
Very informative. Simply excellent.
@pedrogaleano6722
@pedrogaleano6722 4 жыл бұрын
Man how come 39 people not like this video? Thank you very much Sal!
@gotnerdy
@gotnerdy 12 жыл бұрын
Thanks for this and also making the video downloadable. Also what software/hardware are you using for this?
@FlippyBrown
@FlippyBrown 6 жыл бұрын
Sir, am I right to say that every single point on the region is associated to a parallelogram. And we are adding all the parallelograms(its area) associated to every single point on the region, in order to find the surface area?
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Nicholas That sounds right to me :)
@ryanmonte
@ryanmonte 14 жыл бұрын
Yup. It's in a 2nd year calculus class at my university.
@mrbrohere
@mrbrohere 3 жыл бұрын
What are doing after university?😀
@VinothKumar-qo7ry
@VinothKumar-qo7ry 7 жыл бұрын
U are one f the excellent Proff.. I seen
@anmolabhayjain9721
@anmolabhayjain9721 5 жыл бұрын
Can anyone provide me with an explanation as to why during bijective transformation the boundary surface of one closed curve forms the boundary surface of the other closed curve or closed volume? That is why the boundary in u-v plane is also the boundary in x-y(or x,y,z for closed volume) plane of the transformed curve. Also assume that the transformation has a continuous first partial derivative over u and v.
@haroldh6678
@haroldh6678 6 жыл бұрын
Man... just amazing... just amazing
@Barak314159
@Barak314159 10 жыл бұрын
You sir are amazing! You teach so well and in so many topics and I can just thank you infinite amount of times!
@MatthewFricke
@MatthewFricke 13 жыл бұрын
@abhi99ps people use different notations for magnitude
@haidynagi7314
@haidynagi7314 7 жыл бұрын
Solve integration of. X^2/(x^4 +x^3 -1)
@xandersafrunek2151
@xandersafrunek2151 3 жыл бұрын
This series of videos is highly underrated.
@hakuchaku27
@hakuchaku27 10 жыл бұрын
this must be longest video of khan academy
@ShashankShekhar-de4ld
@ShashankShekhar-de4ld 8 жыл бұрын
thanks for giving this great intuition
@moszczynskieng
@moszczynskieng 12 жыл бұрын
Another fantastic vector calculus video from Sal Khan! Many thanks!
@bangaloremathematicalinsti5351
@bangaloremathematicalinsti5351 4 жыл бұрын
One of the fantastic Explanation, Kudos to the Professor :)
@zh1412
@zh1412 13 жыл бұрын
wow thanks for helping me with the fundamentals surface integrals:)
@Liaomiao
@Liaomiao 13 жыл бұрын
why are we doing a double integral? all the vid saids was that we're going in 2 directions. But all the other times we've used double integrals is to find a volume under a surface...
@intellagent7622
@intellagent7622 6 жыл бұрын
makes sense now thanks
@Sam-dc9bg
@Sam-dc9bg 10 жыл бұрын
Thank you! Wow this was a good introduction.
@dhimanroy1671
@dhimanroy1671 8 жыл бұрын
The third function may be charge density.
@山卂丂丂山卂
@山卂丂丂山卂 5 жыл бұрын
Khan academy is the best
@Think0Like0Cheese
@Think0Like0Cheese 9 жыл бұрын
Thank you so much !!
@GlorifiedTruth
@GlorifiedTruth 13 жыл бұрын
Thanks again, Sal.
@smellypotatoes2292
@smellypotatoes2292 6 жыл бұрын
Hi thanks to your videos I learnt calculus at 6th grade
@bheemeshbommireddy4807
@bheemeshbommireddy4807 6 жыл бұрын
LETS STOP ARTICLE 13 sure bud
@thegoonist
@thegoonist 14 жыл бұрын
wow is this university level? ive never encountered this concept before
@coolinglifee
@coolinglifee 12 жыл бұрын
you teach really good!
@Cyclingdino
@Cyclingdino 12 жыл бұрын
I have one question, when we establish the domain of the parameters (s,t) , do we have to make sure the set of values is convex or not at all? I'd appreciate it if anyone could answer. Thank you
@jingxie3126
@jingxie3126 12 жыл бұрын
which one is "the last video" referred at the beginning?
@ausaramun
@ausaramun 3 жыл бұрын
Parial Derivatives of vector-valued functions. (I know...a little late...)
@anonymous_4276
@anonymous_4276 3 жыл бұрын
@@ausaramun yeah. It's a "little" late.
@sakki3378
@sakki3378 3 жыл бұрын
@@ausaramun just a little lol
@yvonneho876
@yvonneho876 3 жыл бұрын
@@sakki3378 a tiny little bit
@agrajyadav2951
@agrajyadav2951 2 жыл бұрын
@@yvonneho876 miniscule (btw this reply might be a teeny tiny bit late as well)
@bladox971
@bladox971 5 жыл бұрын
good luck guys
@jingxie3126
@jingxie3126 12 жыл бұрын
Thanks!
@TheAllboutwin
@TheAllboutwin 13 жыл бұрын
@karkrashful someone's missing something inside.
@lizjakubowski
@lizjakubowski 13 жыл бұрын
Can someone explain why the area of each parallelogram is given by the magnitude cross product TIMES ds dt? i understand the magnitude of the cross product, wouldn't that itself give the area of each parallelogram, and therefore the area of the surface when integrated? are ds dt representative of the tiny depth of that parallelogram?
@y0n1n1x
@y0n1n1x 3 жыл бұрын
The dislikes are from color blinds
@jea1080
@jea1080 12 жыл бұрын
absolutely amazing!!!
@mandeep1244
@mandeep1244 12 жыл бұрын
truly helpful!
@parthasarathym1882
@parthasarathym1882 5 жыл бұрын
I wonder why d(sigma) is not just equal to (dr/dt)X(dr/dt)
@hastyz7325
@hastyz7325 5 жыл бұрын
the magnitude of the cross product of two parellel vectors is 0. that wont span the surface
@liquidstl
@liquidstl 14 жыл бұрын
@rachmaniralf you dont need differential equations or linear algebra?
@SotraEngine4
@SotraEngine4 4 жыл бұрын
is the partial cross product the Jacobian determinant?
@adoado16
@adoado16 14 жыл бұрын
@thegoonist: It's multivariable calc, so most likely. :)
@norwayte
@norwayte 14 жыл бұрын
Very good. Keep on going.
@mrbrohere
@mrbrohere 3 жыл бұрын
Hey! How's life going after 11 years?
@eljapi9346
@eljapi9346 6 жыл бұрын
AMAZING
@christofferbouwer8057
@christofferbouwer8057 9 жыл бұрын
He sounds like James Spader at times
@akshatjindal6851
@akshatjindal6851 5 жыл бұрын
legend
@abhi99ps
@abhi99ps 13 жыл бұрын
Shouldn't you put a double absolute value symbol for magnitude
@raydencreed1524
@raydencreed1524 6 жыл бұрын
abhi99ps It doesn’t matter. If you know what is meant by the symbols, then being anal about formalities like that isn’t going to help anyone
@speedsterfilms2992
@speedsterfilms2992 4 жыл бұрын
songs to sleep to XD
@吳柏慶-t9l
@吳柏慶-t9l 2 жыл бұрын
make sense nice
@vidhyalakshmim7616
@vidhyalakshmim7616 11 жыл бұрын
Which is the last video that he is referring to?
@DecaSpace
@DecaSpace 12 жыл бұрын
I feel that my scholarships, grants and money go to college or classroom that doesn't even explain this content as clear and well as a free KZbin video. I'm starting to really accept the idea that college education is overrated. You are just paying thousands of dollars to "certify" you - sometimes not even teach you well.
@mrfrankincense
@mrfrankincense 10 жыл бұрын
What playlist is this in?
@zuesr3277
@zuesr3277 8 жыл бұрын
Calculus playlist
@binthui
@binthui 10 жыл бұрын
what's the video before this one :((?
@TheSunshineRequiem
@TheSunshineRequiem 10 жыл бұрын
partial derivatives of vector valued functions
@zuesr3277
@zuesr3277 8 жыл бұрын
It's about partials derivative of the vector valued functions.
@romantorres1093
@romantorres1093 8 жыл бұрын
im watching this in my class while i have a test wish me luck ( my test is 2 hours long)
@sabiansmasher2000
@sabiansmasher2000 9 жыл бұрын
Why would I need to know this for civil engineering...such b.s. Well explained though!
@emlmm88
@emlmm88 7 жыл бұрын
Flux and surface integrals are imperative to understanding continuum mechanics topics (like crack propagation) and heat transfer processes between materials.
@Andrew6James
@Andrew6James 5 жыл бұрын
Given we have a square in the 2d space, why when we look at the volume in the 3d space do the lines now become curved?
@Harshhaze
@Harshhaze 5 жыл бұрын
The 2D graph is looking from the top down, and you can't see the curves on tube 3D graph from above
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
That's because they lies on 2 different planes (actually there's no special reason that the path in x,y,z is curved. It could also be a square too) and the fact that t and s variables are parametrizing ("writing") the path that lies on x,y,z plane but those 2 variable doesn't lies on that plane. The t,s variable graph form a square because you let one variable constant, another varies, and you also limit the value that the varying variable can take, meanwhile t,s variables form a curved path on x,y,z because they form 3 different 2 variables function (what i meant mathematically : x = f(t,s), y = g(t,s), z = h(t,s) ). Because this is a parametrized path, then x,y,z variables could be independent or dependent on each other, if z dependent on y and x then it forms a surface (z = h(t,s) = a(x,y) = a(f(t,s), g(t,s))
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
Example for 2D parametrization : A circle can be formed by : x = cos(t), y = sin(t) On xt plane, the equation form a *cosine graph*, on yt plane it form *sine graph*, but on xy plane it form a *circle*. Proof : t = arccos(x) (or arcsin(t)) => y = sin(arccos(x)) We know that cos(arccos(x)) = x = x/1, using pytaghorean and sine definition : sin(arccos(x)) = sqrt(1-x^2)/1 = sqrt(1-x^2) y = sqrt(1-x^2) => x^2 + y^2 = 1
@That_One_Guy...
@That_One_Guy... 4 жыл бұрын
Unfortunately we can't always express parameter function as function in term of x/y/z or some of them , so we just leave them as function of some variable t,s, whatever variable (as input) where x/y/z is the output variables
@k1rv0lak
@k1rv0lak 7 жыл бұрын
I understand this stuff and I'm an infant... What is wrong with me???
@anonymoustraveller2254
@anonymoustraveller2254 7 жыл бұрын
DIv haha , the comment you trolled was just above your comment😂
@Abhijitsings07
@Abhijitsings07 3 ай бұрын
Ur no more an infant now.
@nickvenanzi1607
@nickvenanzi1607 11 жыл бұрын
what program do u use
@xxxcoolboyxxx
@xxxcoolboyxxx 13 жыл бұрын
@adamgil91 why does it matter?
@yanxu6907
@yanxu6907 9 жыл бұрын
can u add subtitle
@HL-iw1du
@HL-iw1du 5 жыл бұрын
6:31 “diffrential”
@vtron9832
@vtron9832 7 жыл бұрын
The only thing I know which I regret saying is that Sal sucks at making nice looking graphs
@MrLeifArnesen
@MrLeifArnesen 13 жыл бұрын
Would you like to take my calc 3 final?
@FlowFusionMusic
@FlowFusionMusic 13 жыл бұрын
@rinwhr people make people make people.
@beiberu
@beiberu 2 жыл бұрын
Wow
@jakiasultanajui4588
@jakiasultanajui4588 7 жыл бұрын
can someone explain why this double integral .
@PopularityTroll
@PopularityTroll 7 жыл бұрын
there are two variables
@wontpower
@wontpower 7 жыл бұрын
When you integrate over the area of the region, you're really integrating over dsdt
@beckhamroyjenkins4223
@beckhamroyjenkins4223 Жыл бұрын
4:22 the transformed surface looks like lips
@zuesr3277
@zuesr3277 8 жыл бұрын
I now know calculus and linear algebra with finance statistics economics and probability and I am at 9th grade is something wrong with me. Is it OK.
@kendallcarter3491
@kendallcarter3491 8 жыл бұрын
That's an astounding thing in 9th grade I struggle in algebra alone.
@victorian4j
@victorian4j 13 жыл бұрын
2 ppl dislike this video cause they failed their exams.. :(
@JustAnotherPers0n
@JustAnotherPers0n 11 жыл бұрын
looks like smooching lips 4:40
@pebble2529
@pebble2529 5 жыл бұрын
JustAnotherPers0n ikr
@Nutterbutterz95
@Nutterbutterz95 11 жыл бұрын
Too damn hard!
@allenoh1569
@allenoh1569 11 жыл бұрын
I am not a huge fan of Anthony Tromba.
@DakaloMudau-j9c
@DakaloMudau-j9c Ай бұрын
am i the only one who sees the joker?
@dillonberger4036
@dillonberger4036 10 жыл бұрын
I don't mean to be pedantic, but the graphs you used at 2:50 don't quite match up. I understand and follow what you're doing completely, but shouldn't your axes on the right graph be labeled s, t, and z?
@dillonberger4036
@dillonberger4036 10 жыл бұрын
Or perhaps there ought to be a condition such that x=s and y=t.
@magicguy1988
@magicguy1988 10 жыл бұрын
Dillon Berger He was exploring how the st-plane is mapped to 3D space using r(s, t) as a position vector function for some surface. It's conventional to label 3D axes as x, y and z
@gus-padovany
@gus-padovany 10 жыл бұрын
On the 3D space the x-axis is not the same as the s-axis and the y-axis is not the same as the t-axis. x y and z are functions of s and t, as he pointed out. f( x(s,t), y(s,t), z(s,t)) . It's a transformation, they're not the same.
@raydencreed1524
@raydencreed1524 6 жыл бұрын
Dillon Berger No, apparently you mean to be wrong.
@aidantdavis
@aidantdavis 8 жыл бұрын
I understand this stuff in 7th grade... What is wrong with me???
@ich123binsimmernoch
@ich123binsimmernoch 8 жыл бұрын
+aidantdavis be happy about it
@hl7297
@hl7297 8 жыл бұрын
You have superpower, go find Prof. X
@rizvanahmedrafsan
@rizvanahmedrafsan 7 жыл бұрын
at 7th grade most of us were attention whores xD
@financewithsom485
@financewithsom485 7 жыл бұрын
Great
@abdallahableel4373
@abdallahableel4373 7 жыл бұрын
You're gonna be getting straight A's in college . lol I'm 20 & i still youtube this
@coolinglifee
@coolinglifee 12 жыл бұрын
Women make sandwiches.
@muhammadmustaqimbinsamsudi4784
@muhammadmustaqimbinsamsudi4784 7 жыл бұрын
Thank you! Wow this was a good introduction.
Surface Integrals
19:45
MIT's Experimental Study Group
Рет қаралды 260 М.
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Finding Slope given two points
15:25
Alex Cho
Рет қаралды 1
Stokes' theorem intuition | Multivariable Calculus | Khan Academy
12:12
Stokes's Theorem
8:11
Professor Dave Explains
Рет қаралды 396 М.
Surface Integrals // Formulas & Applications // Vector Calculus
8:18
Dr. Trefor Bazett
Рет қаралды 110 М.
The Line Integral, A Visual Introduction
8:44
vcubingx
Рет қаралды 176 М.
Evaluating Surface Integrals
12:24
Professor Dave Explains
Рет қаралды 361 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 126 М.
surface integral, example 2 (KristaKingMath)
14:09
Krista King
Рет қаралды 149 М.