This was the only video I could find that went over finding normal vector and parameterization. Thank you for posting
@integrateapproximate4000 Жыл бұрын
thank you so much Dr. Peyam for this walkthrough! it helped me get a better understanding for the idea!
@blackpenredpen4 жыл бұрын
U lost me at “let’s”
@blackpenredpen4 жыл бұрын
On a serious note, r u teaching this to ur calc 3 students already? 😱
@drpeyam4 жыл бұрын
No. we stop at surface integrals 😭😭😭
@رضاشریعت4 жыл бұрын
@@drpeyam because of limited time issues right?
@adityadwivedi44124 жыл бұрын
@@drpeyam is this part of calc 3 as we were taught this is calc2
@hungryplate4004 жыл бұрын
The dark side of the Stokes theorem is a pathway to many abilities some consider to be unnatural.
@kentang59572 жыл бұрын
is it possible to learn this power?
@OtherTheDave4 жыл бұрын
I misread the title as “The Dark Side of Strokes” and I was all “wait, there’s a light side to those?”
@emperorpingusmathchannel53654 жыл бұрын
Initially learning stoke's theorem nearly gave me a stroke.
@J_psi04 жыл бұрын
Love your videos! Both so fun and educational
@jesusalej14 жыл бұрын
Claro que si amigo!
@thesnakednake2 жыл бұрын
This video is absolutely fantastic
@drpeyam2 жыл бұрын
Thank you :)
@luna92004 жыл бұрын
Do you ever plan on doing some analysis on manifolds? I notice you have been gearing towards analysis on the real line and a little bit of topology. Maybe some differential forms/the generalized stokes theorem?
@adityadwivedi44124 жыл бұрын
Even I thought this
@drpeyam4 жыл бұрын
Probably not
@luna92004 жыл бұрын
Does it not interest you as much?
@adityadwivedi44124 жыл бұрын
@@luna9200 he did a PhD on pde
@borisburd29513 жыл бұрын
Very clear, thank you
@elta80643 жыл бұрын
sir can you maybe include an example on how stoke's theorem can be used with gauss's theorem to calculate open loops, or any other example as such. a my professor taught it, but I wasn't too sure, and your videos are superrrrrr clear. thanks so much
@drpeyam3 жыл бұрын
Never heard of it
@elta80643 жыл бұрын
@@drpeyam an example of question would be (integration sign{c})(a.dr) where a =(-y/(x^2+y^2) ,x/(x^2+y^2),1) where c in the first octant is given by : x^2 + y^2 =1 , x+2y-z=1 it starts from (1,0,0) to (0,1,1) ans. (pi/2) +1
@historybuff03934 жыл бұрын
.Dr. Peyam, at the point at which you parameterized the surface, could you have used polar coordinates and the dS factor and avoided having to do the cross product? I saw that at the end you used polar coordinates anyway.
@GhostyOcean4 жыл бұрын
Doing that would make dS messy. It's a lot cleaner this way.
@ronaldjensen29484 жыл бұрын
3:09 - I've always felt that is a really hard way to take a cross-product/determinate of a 3x3 matrix
@RonaldKungu-h3xАй бұрын
Very good lecture
@shlomi83074 жыл бұрын
Peyam joon, please make series of vedio explain all vector fields from beginning till this green and stokes theorems for uneducated ones like me to get the point. Merci
@drpeyam4 жыл бұрын
Already done
@shlomi83074 жыл бұрын
Love you
@zunzwak44823 ай бұрын
thank youuu!
@guill39784 жыл бұрын
One question, is a transcendental number the integral from 2 to 3 of the zeta function?
@drpeyam4 жыл бұрын
No idea
@the_magisterate4 жыл бұрын
Dang, now i feel better bombing vector calculus knowing that Dr. peyam struggled with stoke’s theorem too lol
@historybuff03934 жыл бұрын
I actually subsequently did this integral without parametrizing and without the cross product, and got the same answer.
@drpeyam4 жыл бұрын
Good for you
@NH-zh8mp4 жыл бұрын
Dear Dr Payem, may you help me solve this problem, please ? Give a,b are real numbers. Evaluating the integral of x.e^(-x^2) dx, from a to b, by letting t=x^2, with 3 conditions : 1. 0 ≤ a ≤ b 2. a ≤ 0 ≤ b 3. a ≤ b ≤ 0 And I also wonder if we can use Stokes Theorem in this problem, sir. Thank you sir
@drpeyam4 жыл бұрын
This has nothing to do with stokes, it’s a single variable integral
@JohnVKaravitis Жыл бұрын
I don't believe that you can have any arbitrary surface. Your surface can't extend beyond the outermost line curve defined by dropping perpendicular down from every point on the surface.
@MliloEvidence2 ай бұрын
so funny and amazing to follow😇
@رضاشریعت4 жыл бұрын
I actually used the dark side more than the other side
@liverpoolsintensity1670 Жыл бұрын
Please is there any where you can make your lessons a bit simpler? Although I love your lessons but I usually get lost at some point
@drpeyam Жыл бұрын
That’s the simplest way to present this topic. Also check out the playlist
@liverpoolsintensity1670 Жыл бұрын
@@drpeyam Thank Dr Peyam..I am hoping to be as good as you someday in mathe😩
@Nonita611 Жыл бұрын
thanks
@jesusalej14 жыл бұрын
Que el redultado sea cero, no significa que no sea interesante. The solution is zero does not mean it is not interesting!
@dougr.23984 жыл бұрын
You can integrate over the circular area or over the hemisphere, correct? Which one will be simpler? (Asked very early in viewing, prior to computation of the determinant)... compute one component & permute the variables
@शिवलालचौधरी-य7ढ4 жыл бұрын
धन्यवाद ।
@arkamninguno84464 жыл бұрын
Dr. Peyam, how do you know the parametruzation of "S"? How I know That is r(x, y) = (x, y, 1)? Someone ecuation?
@drpeyam4 жыл бұрын
Check out my video on parametric surfaces
@arkamninguno84464 жыл бұрын
@@drpeyam ohhh, that's right. Jajajaj thank you, I see. 😊
@pandabearguy14 жыл бұрын
I think I had this excact ssme problem on my calc 3 final
@calebmoranga83797 ай бұрын
Im cooked😢
@pandabearguy14 жыл бұрын
Turns out manifolds and exterior derivatives are important
@revelationSandJ4 жыл бұрын
Stokes ist der beste Freund von Tom crawford . Den hättest du einladen müssen
@kacperkinastowski55834 жыл бұрын
easy of hard = hard of easy
@cyrenux4 жыл бұрын
Hi
@jeemain90714 жыл бұрын
Bye
@akashroopmalhi16492 жыл бұрын
GOAT
@umerfarooq48314 жыл бұрын
This is too dark
@guill39784 жыл бұрын
Ok, do you think you'd be able to prove it or umprove it?
@alejandraescalante2775 Жыл бұрын
wow is very simple video...thanks...F(x,y,z)=z^2 i+2xj+y^2 k S:z=1-x^2-y^2,z≥0
@carleto-y8q11 ай бұрын
Horse shit, a length is not equal to a surface area. Why do you omit the units of the integrals?