Summing A Very Interesting Infinite Series

  Рет қаралды 2,865

SyberMath

SyberMath

Күн бұрын

Пікірлер: 29
@Qermaq
@Qermaq Ай бұрын
This was a fun one. Hey, here's a fairly easy one for the holidays: on the first day of Christmas your true love gives to you 1 present a. (n = 1 ==> a) On the second day of Christmas your true love gives to you 2 presents b and 1 present a. (n = 2 ==> 2b + a) On the third day of Christmas your true love gives to you 3 presents c, 2 presents b and 1 present a. (n = 3 ==> 3c + 2b + a) (1) In total, how many presents will your true love give to you on day n? (2) How many presents will your true love have given you in total from days 1 to n?
@schwidola3549
@schwidola3549 Ай бұрын
The second method is a little bit of black magic, because you would have to foresee that deriving would produce an interesting result. Good insight, but the first method is more satisfying, because you realize that you have a nested geometric series, and the very thought of decomposing a sum into other sums is very useful for other problems
@scottleung9587
@scottleung9587 Ай бұрын
Good point!
@robertcotton8481
@robertcotton8481 Ай бұрын
I agree with wolframalpha jyst glance thought we were doing fibanochie
@bobkurland186
@bobkurland186 Ай бұрын
I did method 1
@dan-florinchereches4892
@dan-florinchereches4892 Ай бұрын
I think the sum is i*x^(3i-1) i>=1 So multiplying by 3 and integrating results in the series X^3i geometric series which has Sum(1..n) = (1-x^(3n+1))/(1-x^3) And infinite sum is 1/(1-x^3) when |x|
@scottleung9587
@scottleung9587 Ай бұрын
Nice!
@SyberMath
@SyberMath Ай бұрын
Glad you liked it!
@parimalpandya9645
@parimalpandya9645 Ай бұрын
क्या रामानुजन और महाबलेनियस का हाउस नंबर प्रोब्लम का एक और सुझाव है
@dwm1943
@dwm1943 Ай бұрын
I did method 1, or do I mean 2? Without the differentiation. Easy, but fun. |x| < 1.
@davidmitchell3881
@davidmitchell3881 Ай бұрын
put x = -1 and the sum is rather interesting 😂
@MrGeorge1896
@MrGeorge1896 Ай бұрын
x² + 2x⁵ + 3x⁸ + ... = x² ( 1 + 2x³ + 3x⁶ + ...) substitute x³ with y: x² ( 1 + 2y + 3y² + ...) but we know the second factor is equal to 1 / (1 - y)² x² / (1 - y)² = x² / (1 - x³)² = (x / (1 - x³))²
@MohammadElmi
@MohammadElmi Ай бұрын
How do you know the second factor? This is how I calculated it: Suppose 1 + 2y + 3y^2 + ... = s. Integrating both sides gives: y + y^2 + y^3 + ... = S (supposing s = dS/dy). Using the formula for sum of infinite series: S = y/(1-y). Differentiate and you get: s = 1/(1-y)^2. Do you have a simpler method?
@MrGeorge1896
@MrGeorge1896 Ай бұрын
@@MohammadElmi This series is so common that I consider it as well known. 😀 But we can also derive it as follows: (1 + 2y + 3y² +....) = 1 * (1 + y + y² +....) + y * (1 + y + y² +....) + y² * (1 + y + y² +....) +... = (1 + y + y² +....) * (1 + y + y² +....) = 1 / (1 - y) * 1 / (1 - y) = 1 / (1 - y)²
@ahmadalizade-h2k
@ahmadalizade-h2k Ай бұрын
The second is not true. These equations only hold |x|
@agytjax
@agytjax Ай бұрын
Haven't you heard what Shakespeare has said : "It doesn't matter which method came first, it would suck just the same !"😇
@FisicTrapella
@FisicTrapella Ай бұрын
Shakespeare said that when he realized the second method came first 😄
@forcelifeforce
@forcelifeforce Ай бұрын
Stop spamming your post, you rude *a-hole!*
@seanfraser3125
@seanfraser3125 Ай бұрын
(x/(1-x^3))^2
@guyhoghton399
@guyhoghton399 Ай бұрын
This is my second comment, but I've decided to post it first. 🙂
@SyberMath
@SyberMath Ай бұрын
Haha! Noooo, you can’t do that! 🤪😁
@guyhoghton399
@guyhoghton399 Ай бұрын
@@SyberMath 😀
@agytjax
@agytjax Ай бұрын
Why does this guy always annoys us with his BS : "I am gonna start with the 2nd method first" 😀😀 ? Haven't you heard what Shakespeare has said : "It doesn't matter which method came first, it would suck just the same !"
@guyhoghton399
@guyhoghton399 Ай бұрын
_Let S = x² + 2x⁵ + 3x⁸ + 4x¹¹ + ..._ _x³S = x⁵ + 2x⁸ + 3x¹¹ + ...._ ∴ _S - x³S = x² + x⁵ + x⁸ + x¹¹ + ..._ ⇒ _(1 - x³)S = x² / (1 - x³) if |x| < 1_ ⇒ *_S = x² / (1 - x³)²_*
@SyberMath
@SyberMath Ай бұрын
Pretty good!
Summing A Nice Infinite Series
10:31
SyberMath
Рет қаралды 4,1 М.
An Interesting Infinite Radical
12:53
SyberMath
Рет қаралды 4,2 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
Can you solve this viral problem?
13:19
MindYourDecisions
Рет қаралды 185 М.
Find all positive integer n
16:49
Prime Newtons
Рет қаралды 33 М.
An Interesting Polynomial Equation
11:59
SyberMath
Рет қаралды 2,8 М.
A Quinvigintic Polynomial Equation
11:41
SyberMath
Рет қаралды 3 М.
One of the top five best engineered math questions
6:31
MindYourDecisions
Рет қаралды 117 М.
Something Strange Happens When You Keep Squaring
33:06
Veritasium
Рет қаралды 8 МЛН
The Most Beautiful Equation
12:36
Digital Genius
Рет қаралды 772 М.
An Interesting Quartic Equation
14:14
SyberMath
Рет қаралды 4,7 М.
An Infinite Sum from the Berkeley Math Tournament
24:15
Tony Wang
Рет қаралды 43 М.
A Diophantine Equation  @dhdkro
14:11
Prime Newtons
Рет қаралды 18 М.
Вопрос Ребром - Джиган
43:52
Gazgolder
Рет қаралды 3,8 МЛН