This was one of the best videos I’ve seen explaining transformers and NL models….well done and look forward to the other videos in the series!🍻
@maudentable Жыл бұрын
This is the best video on youtube that introduces transformer models
@paygood Жыл бұрын
I believe this video provides the most comprehensive explanation of transformers.
@timoose39603 жыл бұрын
The comparison between attentions heads and CNN filters made so much sense!
@ArtificialWisdomCloud Жыл бұрын
Mapping to geometry is pro. I have thought since my education about 40 years ago that current mathematics is taught incorrectly. Here is a pro example of how math should be taught!
@jacobyoung20453 жыл бұрын
44:40: Thanks for your attention 😁
@ScriptureFirst3 жыл бұрын
Caught that too
@miladchenaghlou52782 жыл бұрын
After reading about language models, word embeddings, transformers, etc. for a month, this video put everything in order for me. Thanks!
@strongsyedaa73782 жыл бұрын
I didn't understand a single word 😕
@BiswajitGhosh-wg6qj3 жыл бұрын
Please @Tensorflow Team continue with this lecture series ML Tech series
@inteligenciamilgrau7 ай бұрын
After a year returning to that video finally I fully (or at least saw the entire video in a row) understand what is going on!! Maybe one more time to fix and go to the next part!! Thanxx
@kanikaagarwal61502 жыл бұрын
One of the best explanation i have come across on transformers. Thanks
@goelnikhils2 жыл бұрын
Best Video on Transfer Learning. So much clarity
@harryz79732 жыл бұрын
best youtube NLP walk through without cutting corners. best delivery as well.
@JTedam Жыл бұрын
So clear. This is one of the best videos explaining transformer architecture.
@shivibhatia1613 Жыл бұрын
Hands down the best explanation, this after watching so many videos, terrific, Looking forward to some videos on understanding on BARD and its fine tuning
@sergiobdbd2 жыл бұрын
One of the best explanations of transformers that I've seen!
@correctmeifiamwrong58622 жыл бұрын
Great Video. The first Transformer explanation that (correctly) does not use the Encoder/Decoder diagram from the Transformer paper, well done! Additionally talking about the exact outputs (using only one output for predictions) was very helpful.
@jorgegines18022 жыл бұрын
A cristal clear explanation of Transformers. Papers in many cases are very difficult to follow. Pointing out the important omited details which are critical for the model, even if not explained, is very useful. Many out there try to explain transformers without having a clue of what it is. Clearly, this is not the case. Thanks in its deepest tokenized meaning for sharing your knowledge. BTW, the last programming tip is really helpful. A small hands on demo of using BERT(or any flavor of BERT) with a classifier for a particular application would be amazing for another video.
@OtRatsaphong2 жыл бұрын
Great overview and explanation of the Transformer network. I am just starting my exploration into NLP and this talk has saved me lots of time. I now know that this where I need to be focussing my attention. Thank you 👍🙏😍
@moseswai-mingwong83073 жыл бұрын
Thank you for the awesome talk on all the main NLP models, in particular, the great explanation of the Transformer model!
@irfanyaqub9643 Жыл бұрын
She has done an incredible job.
@GBlunted2 жыл бұрын
She's so good! I've watched a few videos attempting to explain these self-attention version of transformers and this one is by far the best in so many aspects with actual deep understanding of the architecture at the top followed closely by coherently communicating concepts, good script, presentation and graphics! I hope she narrates more videos like this... I'm about to search and find out lol! 🧐🤞 🤓
@zedudli Жыл бұрын
That was super interesting. Very clear explanation
@josephpareti91562 жыл бұрын
awesome; the very BEST explanation on self-attention and trasformers
@jocalvo2 жыл бұрын
Wow that explanation actually dissipated many of my questions. Thanks a lot Julia!
@PaulFishwick3 жыл бұрын
Agreed with all. This person should take the lead for other Google educational videos.
@Jacob0113 жыл бұрын
I expected some wishy-washy feel-good "explanation", but I'm pleasantly surprised. So far the best explanation. Goes after the relevant distinguishing key features of the transformers without getting bogged down in unnecessary details.
@toplizard Жыл бұрын
This is very beautifully explained!
@Vinicius-nd8nz Жыл бұрын
Great presentation! Really easy to understand exaplanations of some hard topics, thank you.
@karanacharya182 жыл бұрын
Very well explained! Thank you very much. Especially loved the comparison between CV kernels and multiple QKV parameters.
@aikw5946 Жыл бұрын
Thank you very much ! Great video and very well explained. Yes a video about sentiment analysisfine tuning would be Amazing !
@user-or7ji5hv8y3 жыл бұрын
Great presentation. Really well structured.
@user-wr4yl7tx3w2 жыл бұрын
My favorite explanation so far. Great job.
@deepaksadulla89743 жыл бұрын
Best explanations so far of the attention or QKV concept... I was searching for a good way to visualize it.. Thanks a ton!!
@gunnarw97 Жыл бұрын
Great explanations, thank you so much for this video!
@TensorFlow Жыл бұрын
Glad it was helpful!
@PavelTverdunov2 жыл бұрын
super professional explanation of the topic! Excellent work!
@jvishnuiitm1232 жыл бұрын
Excellent presentation of complex NLP topic.
@WARATEL_114_303 жыл бұрын
Very straightforward. Thank you so much
@EngRiadAlmadani3 жыл бұрын
It's very important library in nlp great work
@geshi71213 жыл бұрын
The explanation is so clear, thank you.
@josephpareti91562 жыл бұрын
at minute 35 the video describes transfer learning, and it is said that during the fine tuning phase ALL the parameters are adjusted, not only the classifier parameters. Is that right? In contrast, when using a pre-trained deep network for a specific image calssification, I froze all parameters belonging to the CNN and just allowed the classifier parameters to vary
@JTedam Жыл бұрын
Julia, Your presentation has triggered a Eureka moment in me . What makes a great training video? Can AI help answer that. Here is a suggestion. Get a collection of videos and rank them by review comments. Using a large language model, find patterns and features and see whether there are correlations between the features and the views and review rankings. The model should be unsupervised. Some of the features can be extracted from comments
@devanshbatra5267 Жыл бұрын
Thanks a ton for the explantion! Just wanted to ask how do we arrive at the values for matrices K, V and Q?
@TheeSurferJim Жыл бұрын
Very nice topic discussion! Thank you 🙂
@koushikroy62592 жыл бұрын
Thanks for your ATTENTION 🤗🤗.. Pun intended!44:39
@davidobembe53023 жыл бұрын
Very clear explanation. Thank youuu
@davedurbin8132 жыл бұрын
Great talk, really clear, thanks! Also I see what you did "Thanks for your attention" 🤣
@ThomasYangLi Жыл бұрын
very good presentation!
@it-series-music2 жыл бұрын
Can someone explain the inputs dict shown in the code at 42:15.
@rwp80333 жыл бұрын
Great video, it would be nice to have a video of reinforcement learning in future ml tech talks.
@amitjain9389 Жыл бұрын
Where can I get the slides for this talk? Great talk
@jantuitman2 жыл бұрын
This is a fairly good presentation. There are some areas where it summarizes to the point where it becomes almost misleading, and at least very questionable: 1. Several other sources that I read claim that the Bert layers will have to be frozen during fine tuning, so I think it is still open for debate what the right thing to do is there? 2. This presentation glosses over the outputs of the pretraining phase. I think the output corresponding to the CLS token is pretrained with the “next sentence prediction task”. So, is this output layer dropped entirely in the fine tuning task? Otherwise I don’t see how the CLS token output would be a good input for sentiment classification. 3. The presentation suggest that the initial non contextual token step is also trainable and fine tunable. Isn’t it just fixed byte pair encodings? I know that these depend on frequencies of letters in the language but can these be trained in process with Bert? 4. This presentation equals transformers very silently to transformer encoders, and thus drops the fact that transformers can also be decoders. I think all initial transformers were trained on sequence to sequence transformation, and then the decoders were trained on next token prediction giving rise to things like GPT, whereas the encoders were trained on a combination of masked token prediction and next sentence prediction giving rise to the BERT like models.
@FinnBrownc2 жыл бұрын
This is a positive comment. KZbin should let it past it’s sentiment filter.
@bryanbosire3 жыл бұрын
Great Presentation
@Randomize-md3bt Жыл бұрын
I came here from tutorials sections of tensorflow official webpage, but i get caught by her beauty
@haneulkim49022 жыл бұрын
Amazing talk! very informative. Thank you :)
@santhoshkrishnan6269 Жыл бұрын
Great Explanation
@赵玥-e9q Жыл бұрын
well done video!
@SanataniAryavrat3 жыл бұрын
Awesome.. great explanation. Thanks.
@chavdarpapazov44233 жыл бұрын
Great presentation! Are the slides available for download? This would be fantastic. Thank you.
@jdcrunchman999 Жыл бұрын
Where can I get the GitHub file
@pohkeamtan98763 жыл бұрын
Excellent teaching !
@FarisSkt3 жыл бұрын
amazing video !
@parsarahimi713 жыл бұрын
Crystal clear .. Tnx
@lbognini3 жыл бұрын
Simply great! 👏👏👏
@sanjaybhatikar Жыл бұрын
Nice, thank you ❤
@OnionKnight541 Жыл бұрын
very nice
@ManzoorAliRA Жыл бұрын
Simply awesome
@ravipratapmishra70132 жыл бұрын
Please provide the slides
@herbertk92663 жыл бұрын
Thank you
@fahemhamou61702 жыл бұрын
تحياتي الخالصة شكرا جزيلا
@satyajit15123 жыл бұрын
Great slides.
@joekakone3 жыл бұрын
Thank you for shraing !
@babaka18507 ай бұрын
Sorry to say, but this was not very good. Key information is missing mostly the WHYs ? why is there a need for Query and Key Matrices? what is the main function of these matrices? How does the Attention function alter the Feedforward NNs?
@vunguyenthai43663 жыл бұрын
nice video
@alikhatami66102 жыл бұрын
okay what you are saying is completely vague . like for the query matrice you mentioned ( some other representation [why do we need another representation at all ?])
@saurabhkumar-yf1vs2 жыл бұрын
real help, thanks.
@shakilkhan4306 Жыл бұрын
Interesting
@enes-the-cat-father3 жыл бұрын
Thanks for not calling Sentiment Classification as Sentiment Analysis!
@billyblackburn864 Жыл бұрын
i love it
@arnablaha8 ай бұрын
Immaculate!
@algogirl28463 жыл бұрын
👍🏻👍🏻👌
@mohammadmousavi12 жыл бұрын
I always find the face of presenter distracting when it is on the slides … can you just talk over slides instead of covering them with presenter’s face??