Basic Computer Vision with ML (ML Zero to Hero - Part 2)

  Рет қаралды 421,574

TensorFlow

TensorFlow

Күн бұрын

Пікірлер: 238
@kaustaubh1234
@kaustaubh1234 5 жыл бұрын
A sensible teacher . Perfect for scientific teaching.Thanks a lot.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thank you! :)
@biomystical
@biomystical 5 жыл бұрын
I knew this before, but now I feel like I am really learning it in practice, good teaching style
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks!
@mihir24051969
@mihir24051969 3 жыл бұрын
I am a non-IT, Mechanical Engineering Professional (27 Years in Manufacturing Industry) and very thankful for the wonderful way of teaching that I ever had in my life!.
@ConsultingjoeOnline
@ConsultingjoeOnline 4 жыл бұрын
I wish I would have discovered this series sooner! Thank you!
@kciudaras
@kciudaras 5 жыл бұрын
Waiting for the next episode! Such a great series
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks!
@kaelhop
@kaelhop 5 жыл бұрын
Introducing convolutional neural networks (ML Zero to Hero, part 3): kzbin.info/www/bejne/rpC5o5qNibCen68
@kzdm5255
@kzdm5255 4 жыл бұрын
Why are there only 127 functions when there are 28x28 pixels?
@amankumarchourasiya2279
@amankumarchourasiya2279 4 жыл бұрын
Thankyou so much for providing this material. We need tutors like you.
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thanks!
@eliasdimadis8307
@eliasdimadis8307 Жыл бұрын
Great teaching! At last, after years of searching found a great tutorial for that topic! Keep on the great job..
@raviverma7197
@raviverma7197 2 жыл бұрын
thank you to the whole team of tensorflow
@chrismorris5241
@chrismorris5241 5 жыл бұрын
Very excited and appreciative of this series. Doing a great job of simplifying a complex topic. Thanks again and can't wait for the next episode!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks, Chris!
@alkhashtee
@alkhashtee 5 жыл бұрын
I don't understand who are those people and what they thinking to dislike this of piece of treasure. Come on and show me what you can do better, instead of just being lazy/jealous and dislike the video. Go ahead Laurance Moroney and keep doing what you doing we all love you and Josh Gordon.
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
I do understand it somewhat -- and it's typically people who *already know* this stuff are critical of it being explained this way. In order to keep it simple, I'm trying to layer in concepts, but when they don't see those concepts explained in this video, they think that it is incomplete. That's something that we call 'Curse of Knowledge' at Google, and I'm doing my best to avoid it here. I'm sorry to the folks that don't enjoy it, but you aren't the target audience for this :)
@torstenknodt6866
@torstenknodt6866 2 жыл бұрын
Would be great if you could explain why 128 is perhaps a good value when having these 28*28=728 inputs and you want 10 categories at the end.
@thedinosham
@thedinosham 2 жыл бұрын
784
@gia7026
@gia7026 Жыл бұрын
😊ol😊😊
@shrikantrane9601
@shrikantrane9601 3 жыл бұрын
Can you elaborate how exact 128 is ? From how it come in picture ?
@kitulinokitulino3360
@kitulinokitulino3360 5 жыл бұрын
Great video. Last number of Table showing softmax at minute 5:54 should be 0.978 and not 9.78. These are probabilities and should sum to 1
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Good point!
@kitulinokitulino3360
@kitulinokitulino3360 5 жыл бұрын
Laurence Moroney you’re most welcome :)
@mistsu1171
@mistsu1171 4 жыл бұрын
Oh I didn't know it was supposed to sum to 1. I thought it's just a random value...
@sansha2687
@sansha2687 4 жыл бұрын
@@laurencemoroney655 it is not Good point. All the numbers in the row totals upto 10 which is number of labels, you can check 9.78+0.22=10.
@willv88
@willv88 Жыл бұрын
Everything is explained nicely except why the middle layer is chosen to be 128. What if this middle layer was 32, or 300? From a mathematical perspective I understand that more functions likely results in better fitting, but how did you determine the ideal number to use? Also, what if we just skipped this second layer entirely?
@rohanmanchanda5250
@rohanmanchanda5250 3 жыл бұрын
Honestly, these videos are better than the codelabs,
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
Thanks!
@iamrising7176
@iamrising7176 4 жыл бұрын
Your job description should be: Make Hard Concepts Look Easy. Thanks so much.
@inquisitivelearner8649
@inquisitivelearner8649 Жыл бұрын
Loss function - How good/bad the model did Optimizer - generate new parameters for the functions to do better Relu- Rectified linear unit Softmax - Picks the bigge at number in the set Model.predict
@mustafakhan5821
@mustafakhan5821 2 жыл бұрын
I didn’t get these f values. What are they and why 0-127?
@rickkamlunglee
@rickkamlunglee 4 жыл бұрын
Great tutorial and exercise. Just one note on the last exercise (exercise 8) with the following line: if(logs.get('acc')>0.9): Resulted in Error: TypeError: '>' not supported between instances of 'NoneType' and 'float' Quick google pointed be to change 'acc' to 'accuracy' as follows: if(logs.get('accuracy')>0.9): Then it works. Hope it helps my fellow students...
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Change to 'accuracy' and try.
@ayrtonfithiadisedjati5366
@ayrtonfithiadisedjati5366 4 жыл бұрын
Thank you very much!
@navidabasi
@navidabasi 4 жыл бұрын
Does anyone know why there are just 128 functions to give out a number? I mean why 128?
@lucasmarques4521
@lucasmarques4521 3 жыл бұрын
I just didn´t understand why the number 128. It´s just a arbitrary number ?
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
Mostly, and it's up for experimentation. Find the smallest one that gives the best results.
@Themojii
@Themojii 4 жыл бұрын
Great video. Just one typo. Time 5:37 is 0.978 (not 9.78) which is a probability score where all those 10 numbers should add up to 1.
@su-swagatam
@su-swagatam 4 жыл бұрын
I was following along with the code and when I tried to evaluate the test set with the model I got a type error:'float' object is not iterable should I cast it as an int? Great content by the way...
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Which line specifically?
@basharwadan8789
@basharwadan8789 4 жыл бұрын
try to divide train_images and test_images by 225.0 train_images, test_images = train_images/255.0 , test_images/255.0
@manchalanagesh9585
@manchalanagesh9585 4 жыл бұрын
Ure super , I searched for these some doubts on that youtube, u be right person which u give correct knowledge, my sincere thanks to u by touching ure feets
@Superman_Kryptonite
@Superman_Kryptonite 4 жыл бұрын
why 128? I didnt get it, why it couldnt be just 100?
@oliverli9630
@oliverli9630 5 жыл бұрын
Will next episode explain why 128 neurons in the middle? thanks.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
No, sorry. The right number for a given problem is something you need to figure out.
@oliverli9630
@oliverli9630 5 жыл бұрын
@@laurencemoroney655 all right. thanks for answering :)
@krishnakhadka2802
@krishnakhadka2802 2 жыл бұрын
if u tried out the code in tensorflow 2.0, there are few changes tf.train.AdamOptimizer() => tf.optimizers.Adam() if getting following error: TypeError: cannot unpack non-iterable float object add metrics i.e. model.compile(optimizer=tf.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics='accuracy') or remove test_acc i.e. test_loss= model.evaluate(test_images, test_labels)
@rabinadk1
@rabinadk1 4 жыл бұрын
Softmax doesn't set largest to one. If you just want to get the one with highest probability you can choose from the values of z. Softmax returns probability of each class.
@kitgary
@kitgary 5 жыл бұрын
After watching this series, I can tell that machine learning is so easy and everyone with enough practice and passion can become a machine learning engineer!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
I believe so! Thanks! :)
@samjithraj7467
@samjithraj7467 5 жыл бұрын
Good Episode.. You explained it a very simple way.
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Thanks!
@GoribMahi
@GoribMahi Жыл бұрын
Wonderful explanations! Looking forword to more videos.
@thamizhendiranc4229
@thamizhendiranc4229 5 жыл бұрын
Really gave me the perfect outline for the computer vision. Thank you !!!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks! :)
@mohammedamirjaved8418
@mohammedamirjaved8418 2 жыл бұрын
Laurence Moroney! You are just Love..
@lethecat
@lethecat 3 жыл бұрын
Wonderful explanations! Looking forward to more videos!
@roningick5707
@roningick5707 2 жыл бұрын
At 4:00 in the video what does adjusting the 128 value do to the training model?
@weiyewang2903
@weiyewang2903 3 жыл бұрын
Thanks for the sharing, this series really help a lot !
@psy0rz
@psy0rz 5 жыл бұрын
Awesome! Couldnt find part 3, only to realise this is brand new:)
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Thanks! Coming weekly
@aaronphan3625
@aaronphan3625 5 жыл бұрын
Thanks for the material Laurence. I'm looking forward to future videos.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks Aaron! :)
@timothymalche8907
@timothymalche8907 4 жыл бұрын
Good explanation but how to determine 128 functions?
@pradeepjat5929
@pradeepjat5929 5 жыл бұрын
Very good series(Love Machine Learning)
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Thanks!
@felipeletelierbasaez6369
@felipeletelierbasaez6369 5 жыл бұрын
Where have you been this whole time Sir? Can't wait for the next episode!
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Right here :)
@smartcontxlimited5658
@smartcontxlimited5658 5 жыл бұрын
Thanks Laurence, this is a great series, very informative.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Welcome! Glad you're enjoying!
@fatmabradai9601
@fatmabradai9601 2 ай бұрын
I couldn andrestand 128 and the the function f0 .. f127 how it works to get the 9 result
@stepanvalerivich6999
@stepanvalerivich6999 5 жыл бұрын
Hey Laurence, just to clarify, does the value 128 represent the number of hidden layers we are implementing in the neural network? Looking forward to more videos!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
The 128 is the number of neurons in that layer, not the number of layers. The number of layers can be derived by counting the lines of code where we use a tf.keras.Layer(something)
@popbayern89
@popbayern89 5 жыл бұрын
Hello Lawrence, Thank you so much for this series. I am new to Tensorflow and I need to use it to classify images, along with a matrix representation that represents a certain feature (analogous to XML files with Object Detection APIs) ... As I have got no idea where to start, which Tensorflow image classification script or framework would you use, if you were me?
@JamesJon1187
@JamesJon1187 3 жыл бұрын
Isn't 5:50 argmax not softmax? Also, this course if fantastic! THanks for breaking down everything, unlike some other "beginner" courses that leave all the comprehension footwork to the student!
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
Welcome! Argmax finds the biggest. Softmax normalizes them to add up to 1 and then finds the biggest.
@Innovativest
@Innovativest 2 жыл бұрын
sorry, where is the code he says it is in the notebook below?
@rishisharma5249
@rishisharma5249 5 жыл бұрын
Big Fan of yours sir Completed your deep learning. ai courses
@AllinOne-vd9oy
@AllinOne-vd9oy 5 жыл бұрын
Rishi bhai deep learning. ai courses ki link share kar sakte ho
@samjithraj7467
@samjithraj7467 5 жыл бұрын
Rishi Sharma from coursera ?
@lysapala2812
@lysapala2812 3 жыл бұрын
But how do I know, how many layers and how many neurons I need? Is it just by testing and watching, if the machine is doing its job well, or is there a trick how to figure it out?
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
Usually by trial and error, a neural architecture search, or just a good guess :)
@alaaeddineboutout9543
@alaaeddineboutout9543 4 жыл бұрын
why u choose 128 functions ?
@kinglaw1688
@kinglaw1688 3 жыл бұрын
Im currently learning python do I need to be good at maths to learn what you are teaching here?
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
I don't think so. I'm not particularly good at Maths.. :P
@adammcallister8195
@adammcallister8195 4 жыл бұрын
It's great to always use the same Datasets for learning, but I think I can learn quicker If I was shown how to create my own datasets and analyze them. Datasets should be called "Trainers"
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
For images, you can just create subdirectories of images, and use these as your dataset. See the next video in this series for more details.
@TorIvanBoine
@TorIvanBoine 5 жыл бұрын
Any hints on how to install tensorflow without any errors?
@dorg99
@dorg99 3 жыл бұрын
if we have relu and softmax in each layer- where are the model parameters/weights that will be adjusted by the optimizer ?
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
The filter values in the convolutional layers, and the weights/biases in the 'Dense' ones
@d3nt391
@d3nt391 3 жыл бұрын
Can someone explain to me why in the example code we are using this fashion dataset but it keeps referring to the "handwritten digits" we're trying to classify? Is this a mistake?
@PritishMishra
@PritishMishra 4 жыл бұрын
BEST TUTORIAL EVER....!!!!!!!!
@erkutates151
@erkutates151 5 жыл бұрын
I got a question. Why any library is imported as their initials? is this a rule in programming or ease of use? import tensorflow as tf? import numpy as np? why is that?
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
I think it's just convenience, short and easy to remember. You could call it anything you like (import tensorflow as xy)
@saraths9044
@saraths9044 4 жыл бұрын
Sir I understood the working of the function relu on the second layer, but why is it used there?
@aliabed9394
@aliabed9394 4 жыл бұрын
I think that not always a computer vision system is a machine learned system, right? Thanks
@dragon_warrior_
@dragon_warrior_ 3 жыл бұрын
dayum these videos are cool and the codelabs too
@dhapolapankaj
@dhapolapankaj 5 жыл бұрын
Does the Algorithm decides which number to assign to Ankle Boot? Or How we can assign a number to specific object? Although we know the number of outputs, I'm little bit confused on assigning numeric output value!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
It doesn't. The person that created the dataset labelled each piece of data, so instead of labelling something 'ankle boot', they labelled it '6'. Then, when training, the NN is told, 'when you see these pixels, they're a 6', 'when you see these pixels, they're a 9', and it tries to figure out the rules that determine those mappings.
@Multimassar
@Multimassar 4 жыл бұрын
I did not understand the 128 part, why picking 128?
@Usle1230editz
@Usle1230editz 3 жыл бұрын
Amazing expert & tutor, thanks..Awesome
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
Welcome, and thank you! :)
@cygmoid
@cygmoid 4 жыл бұрын
Does increasing the number of functions in the keras.layer.Dense make the neural network accurate?
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
It *can*, or it might be a waste of resources. That's something to experiment with.
@tariqshabirbhatti4793
@tariqshabirbhatti4793 5 жыл бұрын
following this current series of ML...!
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Thanks!
@iangonzalez4309
@iangonzalez4309 4 жыл бұрын
After running test_loss, test_acc = model.evaluate(test_images, test_labels), I got this error: TypeError: cannot unpack non-iterable numpy.float64 object Does anyone know why?
@donatassederevicius6313
@donatassederevicius6313 4 жыл бұрын
You need to add an accuracy metric: model.compile(optimizer = tf.keras.optimizers.Adam(), loss = 'sparse_categorical_crossentropy', metrics=['accuracy'])
@rohanmanchanda5250
@rohanmanchanda5250 3 жыл бұрын
1:07 - Ashuwashoo? What's that sir??
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
'What makes a shoe a shoe' - I didn't sneeze :)
@azmatsiddique3564
@azmatsiddique3564 4 жыл бұрын
Hello Sir, Is it compulsory to write keras.layers.Flatten(input_shape=(28,28)) ??????? this code also work for me model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
@William_Clinton_Muguai
@William_Clinton_Muguai 3 жыл бұрын
I love it! AI is super-amazing!
@learnwithajwa4689
@learnwithajwa4689 4 жыл бұрын
It's really helpful me in understanding the the concept
@Sagar_Tachtode_777
@Sagar_Tachtode_777 4 жыл бұрын
great teaching style, Thank you... to run this code which tool you are using?? R or Python ??
@fredmartins5722
@fredmartins5722 4 жыл бұрын
python
@TejasPhase
@TejasPhase 5 жыл бұрын
Thanks for this Video. Now waiting for the next one.
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Me too! :)
@javiersuarez8415
@javiersuarez8415 5 жыл бұрын
Thank you for sharing this videos with us. I have a question Laurence, if a had a reduced set, let us say 50 samples an 2 categories, it is worth it to increase the quality of the image or the deepness of the network to improve the accuracy score? Im my case the label comes from an expensive analysis and we are tryin to find a good aproximation using a CNN.
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
It would very much depend on the diversity of your samples. One technique to avoid overfitting, particularly with a small set is to look at Image Augmentation in Keras.
@rajansaharaju1427
@rajansaharaju1427 5 жыл бұрын
Outstanding series
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks, Rajan!
@amankumarchourasiya2279
@amankumarchourasiya2279 4 жыл бұрын
Is my_images expected to be a numpy array or the array formed by reading an image using cv2 library of python? Please reply.
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Generally it should be structured the same as the training dataset -- so explore the format of that, and you'll have your answer. It differs based on how you train the model.
@Robert-ht5kd
@Robert-ht5kd Жыл бұрын
You didn"t say what are those f0 - f127 functions.
@the_techelite_6097
@the_techelite_6097 3 жыл бұрын
So how does all this code look like when compiled
@luisaguiar4415
@luisaguiar4415 4 жыл бұрын
Very clear. Great video
@saisagole2143
@saisagole2143 4 жыл бұрын
Why did you specifically chose 128 functions
@bilaldmx
@bilaldmx 4 жыл бұрын
Same question
@yumquickcook
@yumquickcook 5 жыл бұрын
Is there a more basic ml learning videos? These r good ,but m cmpltly new with these
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
These are as basic as I could do! :) Try the first 1-2 chapters of "Deep Learning in Python" by Francois Chollet for a more fundamental description
@luis96xd
@luis96xd 4 жыл бұрын
Amazing video, it was well explained
@ManojAP
@ManojAP 5 ай бұрын
Thanks sir, it helps lot
@hal_from_all_nations
@hal_from_all_nations 7 ай бұрын
Im another one who don't catch why 128 neurons in the middle layer. Great Video, thanks.
@michzouthins1657
@michzouthins1657 5 жыл бұрын
Cool! Very informative! If it was also about working with tensors on Google Cloud with your own pictures! I would really appreciate it!
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Later I will show working with images that are downloaded as a zip file. It should be easy to adapt that.
@RandomGuy-hi2jm
@RandomGuy-hi2jm 5 жыл бұрын
can we do the same with voice data???
@jarosawmaruszewski1678
@jarosawmaruszewski1678 5 жыл бұрын
Why not. Just series of numbers with label assigned. NN is agnostic to input nature.
@powerhour4602
@powerhour4602 5 жыл бұрын
Are we no longer acknowledging the difference between ML and DL? Is DL now nestled within ML?
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Not at all. I'm just trying to keep this as simple as possible by reducing the concept count. At the moment, we're at a very abstract high level where there's little difference between the two, and it would take a lot more detail before we'd need to get into the distinctiveness between them. Let's focus on teaching the concepts first so that we can understand the more advanced stuff as it appears.
@hadimasri420
@hadimasri420 5 жыл бұрын
hello Laurence pls how can i know which optimizer i have to choose and which loss? im so confused pls help me
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
The answer there is 'it depends'. My recommendation, before you understand them all, is to look at similar solutions that people have open sourced and start with the function choices they made. To learn more about different function types, and how they work, I'd recommend deeplearning.ai's specialization on Coursera taught by Andrew Ng. It was one of the primary ways I learned. :)
@davidgodri3982
@davidgodri3982 5 жыл бұрын
Great video! I noticed some typos in the exercises code - such as in the last exercise the callback's name doesn't match callback created (i.e. [callbacks] should be [myCallback()]). I hope that helps! Please keep the videos and exercises coming! :)
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks! Sometimes moving from code to slides stuff creeps in. Hopefully it's ok in the links.
@hamedk7228
@hamedk7228 5 жыл бұрын
Moroney is a hero!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
I'm trying... :)
@smhmkkh
@smhmkkh 4 жыл бұрын
How do people find all these photos on e.g shoes. He used 70 thousand images of them of course its not possible to collect them 1 by 1 right?
@manfyegoh
@manfyegoh 5 жыл бұрын
cant wait for the next video!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Coming soon!
@arifindobson
@arifindobson 5 жыл бұрын
TensorFlow rocks!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
It does, doesn't it? :)
@revietech5052
@revietech5052 4 жыл бұрын
Why do we have 128 functions? Why 128?
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Purely arbritrary. Test different values to get the best results.
@keithprossickartist
@keithprossickartist 2 жыл бұрын
Again, thank you.
@slkslkful
@slkslkful 5 жыл бұрын
thanks for this great series
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Welcome!
@subrahmanyamvemuri5881
@subrahmanyamvemuri5881 4 жыл бұрын
This is wonderful.
@KirillBezzubkine
@KirillBezzubkine 5 жыл бұрын
Waiting for the next vid. Thx
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
On its way...
@sagar73594
@sagar73594 5 жыл бұрын
Nicely done.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks! :)
@kalyanalladi
@kalyanalladi 5 жыл бұрын
Crisp and clear
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thank you!
Intro to Machine Learning (ML Zero to Hero - Part 1)
7:18
TensorFlow
Рет қаралды 1 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Mom Hack for Cooking Solo with a Little One! 🍳👶
00:15
5-Minute Crafts HOUSE
Рет қаралды 23 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Build an image classifier (ML Zero to Hero - Part 4)
5:26
TensorFlow
Рет қаралды 203 М.
Computer Vision: Crash Course Computer Science #35
11:10
CrashCourse
Рет қаралды 421 М.
How I'd learn ML in 2025 (if I could start over)
16:24
Boris Meinardus
Рет қаралды 143 М.
Why Computer Vision Is a Hard Problem for AI
8:39
Quanta Magazine
Рет қаралды 144 М.
How do non-euclidean games work? | Bitwise
14:19
DigiDigger
Рет қаралды 2,5 МЛН
Reinforcement Learning - My Algorithm vs State of the Art
19:32
Pezzza's Work
Рет қаралды 151 М.
Evolving AIs - Predator vs Prey, who will win?
12:15
Pezzza's Work
Рет қаралды 2,9 МЛН
10 Math Concepts for Programmers
9:32
Fireship
Рет қаралды 2 МЛН
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 357 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41