Intro to Machine Learning (ML Zero to Hero - Part 1)

  Рет қаралды 1,046,756

TensorFlow

TensorFlow

Күн бұрын

Пікірлер: 398
@anakinskywalkerrr
@anakinskywalkerrr 5 жыл бұрын
This man explain what machine learning is in the simplest way I ever heard. Good one, keep it up
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks Yoga!
@d.brilliant5092
@d.brilliant5092 5 жыл бұрын
Sooo trueeee!!!!
@MisterPlatitude
@MisterPlatitude 5 жыл бұрын
Laurence, thank you so much for taking the time to put out such concise, intuitive walkthroughs. You manage to make everything going on behind the curtain really accessible and unintimidating!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks! Glad you enjoyed! :)
@ici6308
@ici6308 2 жыл бұрын
Laurence, you're just a genius. I have tried to understand that ML from many tutorials, but it's just from yours I really and simply understand.
@AyshaFilms
@AyshaFilms 3 жыл бұрын
As someone who had just begun self learning programming, this explanation about machine learning is very clear and understandable. Thank you!
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Great to hear Aysha! Thanks! :)
@decryptifi2265
@decryptifi2265 3 ай бұрын
Best intro to machine learning I have seen. Thanks a lot Laurence
@shashankbarki7029
@shashankbarki7029 5 жыл бұрын
Was just waiting for this from Lawrence. I m learning machine learning daily and time to take this to next level. Thanks Lawrence and Google and tensor flow
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks, Shashank!
@M1ndV0yag3r
@M1ndV0yag3r 3 жыл бұрын
@shashank barki would you mind sharing how you are learning ML?
@jesjames
@jesjames 2 жыл бұрын
You know those videos that you start watching and then get glued to them... :D Well done Laurence, in the first few seconds I wouldn't have bet on watching it
@laurencemoroney655
@laurencemoroney655 2 жыл бұрын
THanks Jes!
@shubhamdeep1804
@shubhamdeep1804 2 жыл бұрын
@@laurencemoroney655 k
@Themojii
@Themojii 4 жыл бұрын
Subscribed after watching this. Love the way you explain. You explain the concept very clearly and also you add a little bit of the code which gives me a great preparation for the coding application. Keep up the good work Lawrence
@saedsaify9944
@saedsaify9944 5 ай бұрын
The code is wrong. Not a good sign when the Hello World code from the official channel doesnt work. print(model.predict([10.0])) throws an error, you need to use something like print(model.predict(x=np.array([10.0])))
@William_Clinton_Muguai
@William_Clinton_Muguai 3 жыл бұрын
In traditional programming, we infer answers after rules act on data, but in ML, we infer rules after answers act on data. Got that really straight.❤️❤️❤️❤️
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Nice!
@fet1612
@fet1612 5 жыл бұрын
Hello, Laurence Moroney, Astounding presentation. How quickly and how brilliantly you put such a huge task look so simple. I must admire your ability. Keep up the good work, thumbs up here.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks Fet!
@aytunch
@aytunch 5 жыл бұрын
Laurence keep more videos coming:) Was a pleasure watching and learning
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Working on it! :)
@albertastillero1085
@albertastillero1085 Жыл бұрын
Subscribed Sir Laurence! Thanks for the simple yet concise explanation in a short time.
@vishalrana1373
@vishalrana1373 5 жыл бұрын
Brilliant explanation Laurence.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
THanks, Vishal
@bilboswaggins7629
@bilboswaggins7629 4 жыл бұрын
Amazing video. Though I do feel the need to say that playing scissors with the thumb out is sketchy and looks like you are trying to straddle the line between scissors and paper.
@badsanta7356
@badsanta7356 2 жыл бұрын
It's almost paper like 60 % paper
@mariomacias4476
@mariomacias4476 Жыл бұрын
@@badsanta7356 mnb 0:01
@mariomacias4476
@mariomacias4476 Жыл бұрын
😮😮😅 nnnjnhj😮😢😅😊😊
@KefyalewAbdella
@KefyalewAbdella Жыл бұрын
can you give me the documentation, and if you would help me you con assist me to make it my final project
@nathanas64
@nathanas64 5 жыл бұрын
This is one of the clearest explanations ever ! Great job!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks!
@nathanas64
@nathanas64 5 жыл бұрын
Laurence Moroney what a service to humanity that google is releasing tensorflow to the public domain. The benefit that will come out of this -and i don’t mean financial - is immeasurable. It’s like IBM releasing the paper on FFTs in the 60s !!
@johnlao1469
@johnlao1469 5 жыл бұрын
Im really glad tensorflow by itself is doing tutorial right now. Because i have this research project that implements machine learning and it helps me to learn and understand each lesson about it.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
That's great, thanks for letting us know! :)
@brendonprophette8890
@brendonprophette8890 3 жыл бұрын
my procrastination has transcended to new levels I am watching this instead of studying for my 2 finals or working on my 4 remaining projects with less than 2 weeks left to finish all of those things lol
@Intrinsion
@Intrinsion 3 жыл бұрын
Did you finish?
@brendonprophette8890
@brendonprophette8890 3 жыл бұрын
@@Intrinsion yea, only because my software development professor decided to make the final project optional
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Oops! Sorry about that! :)
@venugopalt6861
@venugopalt6861 3 жыл бұрын
This is awesome mike the best explanations i have ever made on Machine Learning and i got a feel and beauty of nerual network when i heard your class , great job , keep posting like these cheers
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Thanks so much! :)
@rohanmanchanda5250
@rohanmanchanda5250 3 жыл бұрын
You're welcome kid.
@rohanmanchanda5250
@rohanmanchanda5250 3 жыл бұрын
@@LaurenceMoroney I didn't notice it was actually you sir. This function cannot recognise polynomials like square equations or cubic. I provided it with xs as 1.0, 2.0... and ys as their square, but it never got any better than a loss of 6.2222, and if I entered 10, it gave me a value of 36.67... ???
@AshishChauhanYoungy
@AshishChauhanYoungy 5 жыл бұрын
Hey there Lawrence. Really good explanation. Thanks for putting together. Just wanted to ask how often these vids will come out?
@dimonfrekpdimonfrekp3008
@dimonfrekpdimonfrekp3008 5 жыл бұрын
www.coursera.org/instructor/lmoroney
@ohlssonster
@ohlssonster 5 жыл бұрын
Once per second
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
This series is 4 videos, coming out weekly
@javiersuarez8415
@javiersuarez8415 5 жыл бұрын
@@laurencemoroney655 4 is a small number. 😐. When is estimated second season release?
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
@@javiersuarez8415 Haha -- I haven't gotten around to filming a second season yet, but as they look like they're going to be popular, I should get moving on that... :)
@scientistgeospatial
@scientistgeospatial 5 жыл бұрын
You're genius Laurence, for sure! Excellent demonstrations and brilliant examples.
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thanks!
@keithprossickartist
@keithprossickartist 2 жыл бұрын
Thank You for explaining this so clearly and eloquently.
@deborahayeni_
@deborahayeni_ Жыл бұрын
Thanks. You just spiked my interest in this course
@SK-lm2zs
@SK-lm2zs 4 жыл бұрын
this video is soo good❣️ I watched this many times to understand what ML is. I studied Matlab at University, this video is also good for review of ML😊
@koushikdatta5130
@koushikdatta5130 5 жыл бұрын
Loved the intro. Waiting for the next video.i was searching for such tutorial for long time, finally got one. Thanks tensor flow.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Welcome! Thanks for watching!
@DatascienceConcepts
@DatascienceConcepts 4 жыл бұрын
Nice explanation. I am also building a course on ML in Python (for a University) more from an implementation perspective. This surely helps!
@khadijahalsmiere3718
@khadijahalsmiere3718 5 жыл бұрын
Wow , I’ve been waiting for such an opportunity to learn machine learning from an expert . Thank so much and keep it up , we need it for our big project GOD’s willing .
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
I hope it works out :)
@khadijahalsmiere3718
@khadijahalsmiere3718 5 жыл бұрын
Thanks a lot
@jng711b
@jng711b 3 жыл бұрын
Great explanation. I am taking Lawrence's courses in ML / Tensorflow. Very useful. Thanks so much!
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Thanks John!
@joseortiz_io
@joseortiz_io 5 жыл бұрын
I love these tutorials and videos that Tensorflow puts out. Super informative. Thank you Laurence, what a great video! You bet I'll keep watching these series! Have a fantastic day everyone!😁👍
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks! :)
@PareshTadvi-qr1to
@PareshTadvi-qr1to Жыл бұрын
...
@PareshTadvi-qr1to
@PareshTadvi-qr1to Жыл бұрын
..
@PareshTadvi-qr1to
@PareshTadvi-qr1to Жыл бұрын
Nj... N
@AlexeyArtamoshin
@AlexeyArtamoshin 4 жыл бұрын
Extremely helpful explanation, thank you very much!
@guyshur2688
@guyshur2688 4 жыл бұрын
Great video. You mention the small error is due to uncertainty due to the low sample size, is it not possible that the model simply descended to a not quite accurate relationship? Granted the cause would still be low sampling but the main question is if the error is explicitly programmed to reflect uncertainty because the input could still be 19 and be labeled uncertain.
@florianeck6512
@florianeck6512 4 жыл бұрын
finally some video that makes digging into the topic understandable.
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Thanks!
@sriti_hikari
@sriti_hikari 4 жыл бұрын
That was a very good explanation, thank you!
@ademolaorolu5930
@ademolaorolu5930 2 жыл бұрын
Precise and Concise. Thank you Lawrence!
@theprimordialdude1138
@theprimordialdude1138 4 жыл бұрын
Very good explanation. Easy to understand. Continue the series
@LaurenceMoroney
@LaurenceMoroney 4 жыл бұрын
We are :)
@rishishkumarnaik9954
@rishishkumarnaik9954 5 жыл бұрын
Hey Lawrence, its really a pleasure to learn from your videos. Waiting for more videos to come and take us deep into AI.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks Rishish! :)
@MikesTechCorner
@MikesTechCorner 5 жыл бұрын
In the math example we get a NAN when typing in other x values in the array like 100. Do you know why? from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import numpy as np x = [-1.0, 2.0,4.0,6.0,7.0, 100.0] y = [] x_test = [10] for i in x: y.append(i*2 +5) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(units=1, input_shape=[1]) ]) optim='sgd' model.compile(optimizer=optim, loss='mean_squared_error') xs = np.array(x, dtype=float) ys = np.array(y, dtype=float) model.fit(xs, ys, epochs=500) print(model.predict(x_test))
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Data should really be normalized when fed in for training, or the optimizer/loss won't work. We get away with it when we use small values, but that gets exposed at larger values. To do this you should normalize the training/test data and then retrain.
@kamilpadula7152
@kamilpadula7152 2 жыл бұрын
this open for me new world
@marcosdearruda77
@marcosdearruda77 5 жыл бұрын
Nicely done. Thank you so much for sharing this video with us,
@mihaelacosinschi
@mihaelacosinschi Жыл бұрын
here's the code needed from the video, if anyone wants to try it out import tensorflow as tf from tensorflow import keras import numpy as np model=keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer="sgd", loss="mean_squared_error") xs=np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) ys=np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float) model.fit(xs, ys, epochs=1100) print(model.predict([10.0])) I am an absolute beginner and wanted to run the code, but could only get errors at first. In case anyone needs this broken down, I added the first 3 lines that are necessary to run the tensorflow and keras libraries, installed previously via terminal.
@ConsultingjoeOnline
@ConsultingjoeOnline 4 жыл бұрын
Great video! THANK YOU. I've been trying to get to this point for a while. Getting everything setup is a hurdle in itself. At least with OSX
@muhendishanimm
@muhendishanimm 3 жыл бұрын
I really loved the videos then liked all before watching cos i am sure I will watch all :D inshaallah :D Thanks for yoru effort!
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Welcome!
@quegiangson3786
@quegiangson3786 4 жыл бұрын
It's so amazing explanation. Thanks a lot Lawrenece !
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thank you! :)
@logicfacts9964
@logicfacts9964 5 жыл бұрын
I didn't understood what exactly is input shape and why it is 1? Because is accepts our input array by only 1 value at the time or there is other reason? Also I can't understand how and why NN with just 1 neuron produces 18.99 instead 19 because 1 neuron means that it can predict only exact value and any deviation is inposible?
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Input shape is 1, because we just want to predict the result for 1 value input (i.e. 10). Neuron won't get *exact* value because it deals in probabilities, not certainties, so the prediction is a very high probability that the answer is 19, but when evaluating that as a number you get something close to 19
@aradaizlebeni1
@aradaizlebeni1 Жыл бұрын
very good and simple lecture. thank you.
@dipankarkaushik5285
@dipankarkaushik5285 5 жыл бұрын
You missed 'tf.keras.' in the 1st line. So, model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) will be the correct code.
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
oops!
@hobypd
@hobypd 4 жыл бұрын
I have a question on something I don't understand: Dr. Moroney said that prediction is not perfect because the computer is trained for 6 values that form a straight line, but outside those 6 may be not straight (although it is highly probable that they are straight). I don't get this point: since it is a NN with only one neuron, so it has to be a straight line the prediction (it should be like a linear regression). Am I correct? Or did I interpret something wrong?
@ashwinsenthilvel4976
@ashwinsenthilvel4976 5 жыл бұрын
Hi Lawrence, I am trying to implement same code with two inputs X1 and x2. I am finding difficulty in 1) how to specify x value like how the matrix of the two input should be. 2)what must be the input shape specified here. Could you please help with this.
@moacirfranciso9645
@moacirfranciso9645 2 жыл бұрын
Hinos
@psaikrishna90
@psaikrishna90 4 жыл бұрын
Wow such a great explanation with a simple example. Thanks.
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thanks! :)
@압둘하미드이드리스
@압둘하미드이드리스 8 ай бұрын
Great, more inquisitive on the subject
@acutu55
@acutu55 2 жыл бұрын
Great Introduction!
@donkeshwarkavyasree8632
@donkeshwarkavyasree8632 3 жыл бұрын
This video's are literally making me feel fascinated to learn ML. You are definately life saver 🙏. Thanks a ton 👍
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Very welcome! :)
@sidtv2542
@sidtv2542 2 жыл бұрын
Videos like this > A $5,000 college course
@autosales3196
@autosales3196 10 ай бұрын
Rinse spin repeat.×3 or X4 to remove one situation. ......I can do this. Thanks for the patience ☺️ God sure made a blessing in you!
@zaknikov
@zaknikov 5 жыл бұрын
Very good explanation thank you
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Welcome! :)
@Pa-ow1nj
@Pa-ow1nj 5 жыл бұрын
please more of that its so good explained
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Working on it! :)
@NicO-cm2xo
@NicO-cm2xo 5 жыл бұрын
Awesome master teacher Lawrence.. now i need autoML to learn ML
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Haha, so do I! :)
@nabhannoorish5100
@nabhannoorish5100 4 жыл бұрын
Thanks for teaching this. You made this very easy
@gennadyplyushchev1465
@gennadyplyushchev1465 5 жыл бұрын
Great and simple video! Thank you!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Welcome! :)
@thecandel5479
@thecandel5479 4 жыл бұрын
You are very very good scientist. I thank you very much. I am from Jordan. I study master in computer and networks.
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thanks Raed!
@SamuelLawson
@SamuelLawson 7 ай бұрын
Running that code, I got an error: `ValueError: Unrecognized data type: x=[10.0] (of type )` -- fixed when I changed the predict() arg to `np.array([10.0])`
@skewd2528
@skewd2528 5 ай бұрын
Do print(model.predict(np.array([10.0], dtype=float))) instead
@kartikaykhosla1201
@kartikaykhosla1201 5 жыл бұрын
Hey Lawrence just wanted to know is it a weekly series or will just come whenever next is available
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Goal is weekly
@jfl1014
@jfl1014 Жыл бұрын
Very good teacher thank you
@simonwhitehead2857
@simonwhitehead2857 5 жыл бұрын
Ok, you show some code that builds and trains the model before making a prediction. I found that on subsequent runs the accuracy increases, I realize that for some applications this can result in 'overfitting'. So once I am happy with the level of accuracy ,how can I apply the trained model without running the training (how/where is the model saved?)? Really love this course my head is working overtime in thinking of ways I want to try and apply it!
@BiancaAguglia
@BiancaAguglia 5 жыл бұрын
Nice, clear explanations. This series is off to a good start. 😊 Looking forward to seeing more videos.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks Bianca!
@slvrpltd
@slvrpltd 2 жыл бұрын
stupid question: where do i tell the thing that the relation between x and y is a math problem? how does it know that it has to calculate something and not come up with something else?
@piers9186
@piers9186 5 жыл бұрын
Excellent. When does No.2 arrive?!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Weekly
@naduniranasinghe6593
@naduniranasinghe6593 4 жыл бұрын
super explanation. you are a great teacher
@LaurenceMoroney
@LaurenceMoroney 4 жыл бұрын
Thanks Naduni!
@DirkJanUittenbogaard
@DirkJanUittenbogaard 10 ай бұрын
Great video Laurence! For me the code you used failed "ValueError: Unrecognized data type: x=[10.0]". After changing the last line (print model predict) to this it worked: print(model.predict(tf.convert_to_tensor([10.0])))
@hamsterman1571
@hamsterman1571 4 ай бұрын
giving xs and ys are array but as an input u are using a list '10.0' so its error, u can also try : predict(np.array([10.0])))
@zhang20244
@zhang20244 4 жыл бұрын
So nice , easy to understand , Thanks
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Glad you like! :)
@codewithluq
@codewithluq 5 жыл бұрын
very nice way of teaching
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
I'm trying! :)
@ericascheffel4527
@ericascheffel4527 3 жыл бұрын
Excellent explanation, thank you very much!
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
You're welcome, Erica!
@sunilkb144
@sunilkb144 4 жыл бұрын
i have typical use case such as to predict the value of y for a given x but the logic for calculating the value of y ( ie in this case y=2x-1) is changing on daily basis. can tensor flow can predict this kind of data
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
If data changes, model should be retrained
@krishnachauhan2850
@krishnachauhan2850 4 жыл бұрын
Please make a series on audio data loading n analysis using tensorflow
@Arnau_0_0
@Arnau_0_0 4 жыл бұрын
Really good explanation!
@abdenourdjennane9309
@abdenourdjennane9309 4 жыл бұрын
Thanks. I like this way of teaching.
@TudoEstudado
@TudoEstudado Жыл бұрын
this is so much difficult how do I landed here? try to only start something but I do not know even where to start. too much info
@kvenkataraju
@kvenkataraju 5 жыл бұрын
Thanks for explanation, if I feed x and y with more values like xs = 2000.0 and ys = 3999.0 (2x-1), my loss becoming infinite. Why that is happening? Great if you share more details on it.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Data being fed into the neural network should really be normalized. I.e. made to be between 0 and 1. We get away with not doing that with the smaller values here, but if we don't d that, they we'll usually end up breaking the loss function / optimizer and getting infinite loss etc. So if your range of Xs were from 0 to 2000, and your range of training Ys were (2x-1), you should divide all Xs by 2000, divide all Ys by 2000, train on that, and when you do a prediction, divide the input by 2000, and multiply the output by 2000 etc.
@AnandBaburajan
@AnandBaburajan 5 жыл бұрын
Here's the working code: from tensorflow import keras from keras.models import Sequential from keras.layers import Dense import numpy as np model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer='sgd', loss='mean_squared_error') x=np.array([-1.0,0.0,1.0,2.0,3.0,4.0], dtype=float) y=np.array([-3.0,-1.0,1.0,3.0,5.0,7.0], dtype=float) model.fit(xs,ys,epochs=500) x1=np.array([10.0], dtype=float) print(model.predict([x1]))
@regeleionescu935
@regeleionescu935 5 жыл бұрын
Hi, thank you for the great video! I have been playing around with your example using different sets of numbers. For example, I extended the first set from 1.0 to 12.0 and for the second set I used the days of the month(like 31, 28, 31, 30 etc). With a set of 12 pairs it worked fine. It managed to predict the 13th month as being 31 days. Then I wanted to be smarter and I extended the set of data to 24 pairs, basically repeating one year and I tried to predict the 25th and the 26th month length. The problem is that with 24 pairs of numbers the error keeps growing to infinite and the final result is NaN - I wonder why?
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Yeah -- when you start using a lot of numbers the error rate grows, because the dataset isn't normalized. Try normalizing, then learning from the normalized values, and then denormalizing afterwards.
@regeleionescu935
@regeleionescu935 5 жыл бұрын
@@laurencemoroney655 Thank you very much for your kind answer!
@kvenkataraju
@kvenkataraju 5 жыл бұрын
@@laurencemoroney655 Hi, you mean normalizing the data? how to do that? is that by adding normlization layer?
@alexandeap
@alexandeap 5 жыл бұрын
Excelente explicación. Muchas gracias pero Dónde están los demás videos? Podría gentilmente compartirlos intente buscar el curso en coursera pero no lo encuentro a usted y seria bueno que comparte este curso en coursera.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Coursera Course: www.coursera.org/learn/introduction-tensorflow/ Rest of the videos will be published on this channel
@alexandeap
@alexandeap 5 жыл бұрын
Ohh thanks very much for the information. Best regards.
@oneproductionman
@oneproductionman 4 жыл бұрын
What I really want to know is what exactly are the things happening with that single neuron/layer... Forgive my poor understanding but this video is just like saying, "if you put a dough in the oven and turn it on, it will come out as bread"... The contents of the dough was explained but I would like to know the mechanism in the oven and how it turned the dough into bread.
@LaurenceMoroney
@LaurenceMoroney 3 жыл бұрын
Check out Andrew Ngs course. He'll teach you the chemistry of why dough becomes bread.
@chrismorris5241
@chrismorris5241 5 жыл бұрын
Rules + data vs. answers + data. Pretty good.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks!
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Thanks!
@TopVideos-ln2ns
@TopVideos-ln2ns 4 жыл бұрын
What programing language to use? More recommended .. and thanks
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
For this -- Python
@hemakumargantepallidataandai
@hemakumargantepallidataandai 4 жыл бұрын
Awesome presentations skills.
@murmodeus
@murmodeus 4 жыл бұрын
I tried to feed the values for "y = x² + 5" but the algorithm failed to predict the result. I guess this setting is only good for "y = mx + n" kind of equations. I wish I'd understand the reason though.
@MikeKay1978
@MikeKay1978 4 жыл бұрын
I did the same and I guess since there is only one neuron it can only find one weight i.e factor and a bias i.e offset. So you will need more neuron i.e a bigger nn to be able to handle x^2 polynomials.
@alessandroruggiero8932
@alessandroruggiero8932 5 жыл бұрын
Can i use purhon 3.7 or have i to use 3.6 as before
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Sure
@canjohn
@canjohn 5 жыл бұрын
Great intro, however how often are you planning to release new chapters? There are tons of materials to learn ml on the internet and even if it's coming from you, directly from tensorflow devs, waiting for a 6 minute new episode for 4 days isn't particularly good I guess.
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Doing these weekly
@RandomGuy-hi2jm
@RandomGuy-hi2jm 5 жыл бұрын
Plz be regular and consistent. 😊
@Stwinky
@Stwinky 5 жыл бұрын
Looks like a job for normalization 😉
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
Trying!
@RandomGuy-hi2jm
@RandomGuy-hi2jm 5 жыл бұрын
@@laurencemoroney655 thanks.. Loved ur Videos too knowledgable
@rajansaharaju1427
@rajansaharaju1427 5 жыл бұрын
eagerly waiting for part-2
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
It's alredy out. Part 3 next week.
@AbhishekKumar-mq1tt
@AbhishekKumar-mq1tt 5 жыл бұрын
thank u for this awesome video
@laurencemoroney655
@laurencemoroney655 5 жыл бұрын
You are welcome! :)
@AssholeCanadian
@AssholeCanadian 4 жыл бұрын
Here's a dumb question from a guy who doesn't know anything (that I couldn't find a clear and obvious answer for): Does Tensorflow send your data away for remote processing, or is it / can it all be done locally to the machine where the code is written?
@LaurenceMoroney
@LaurenceMoroney 4 жыл бұрын
Neither. As a developer you can train locally on your machine, or you can create a distributed network to train on, and 'where' that distributed network is is entirely up to you.
@TheCyberCraft
@TheCyberCraft 4 жыл бұрын
Lawrence, great job man! thank you so much
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
Thanks! :)
@papareddysrinivasulureddy7591
@papareddysrinivasulureddy7591 4 жыл бұрын
Sir is it important to study complete process of all machine learning algorithms or it's just enough to know the application of each algorithm . please tell
@the_bitcoin_guy
@the_bitcoin_guy 4 жыл бұрын
I feel like Neo : "I know kung fu 🥋! " . That was so concise !!! Thank you very much ...
@LaurenceMoroney
@LaurenceMoroney 4 жыл бұрын
haha! Thanks :)
@alex9046
@alex9046 3 жыл бұрын
Laurence will do that to you lol, amazing teacher
@prathameshdinkar2966
@prathameshdinkar2966 4 жыл бұрын
Nice! but there is a bug in the last example of the colab sheet - when u try to stop training if the accuracy becomes more than 90%
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
I'll check it out
@adityadudeja1126
@adityadudeja1126 4 жыл бұрын
on which data losses are calculated because the model has seen train_data and train_labels
@laurencemoroney655
@laurencemoroney655 4 жыл бұрын
It has seen those, and it calculates loss using those. The model will measure its performance against the known values, and calculate which ones it got 'right' and which ones it got 'wrong', with the loss function reporting loss on these.
@angeloabritaa
@angeloabritaa 5 жыл бұрын
Bom tutorial, aguardando continuação. Like from Brazil hu3br
@LaurenceMoroney
@LaurenceMoroney 5 жыл бұрын
Thank you! :)
@sabaal-jalal3710
@sabaal-jalal3710 4 жыл бұрын
clear explanation thank you so much!
@LaurenceMoroney
@LaurenceMoroney 4 жыл бұрын
THanks!
Distributed Processing and Components (TensorFlow Extended)
11:48
Basic Computer Vision with ML (ML Zero to Hero - Part 2)
7:24
TensorFlow
Рет қаралды 421 М.
JISOO - ‘꽃(FLOWER)’ M/V
3:05
BLACKPINK
Рет қаралды 137 МЛН
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
But what is a neural network? | Deep learning chapter 1
18:40
3Blue1Brown
Рет қаралды 18 МЛН
How I'd Learn AI in 2025 (if I could start over)
17:55
Dave Ebbelaar
Рет қаралды 1,2 МЛН
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 357 М.
Introduction to Machine Learning
14:30
Tech With Tim
Рет қаралды 45 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 431 М.
Machine Learning Zero to Hero (Google I/O'19)
35:33
TensorFlow
Рет қаралды 1,8 МЛН
How I'd learn ML in 2025 (if I could start over)
16:24
Boris Meinardus
Рет қаралды 144 М.
JISOO - ‘꽃(FLOWER)’ M/V
3:05
BLACKPINK
Рет қаралды 137 МЛН