This man explain what machine learning is in the simplest way I ever heard. Good one, keep it up
@laurencemoroney6555 жыл бұрын
Thanks Yoga!
@d.brilliant50925 жыл бұрын
Sooo trueeee!!!!
@MisterPlatitude5 жыл бұрын
Laurence, thank you so much for taking the time to put out such concise, intuitive walkthroughs. You manage to make everything going on behind the curtain really accessible and unintimidating!
@laurencemoroney6555 жыл бұрын
Thanks! Glad you enjoyed! :)
@ici63082 жыл бұрын
Laurence, you're just a genius. I have tried to understand that ML from many tutorials, but it's just from yours I really and simply understand.
@AyshaFilms3 жыл бұрын
As someone who had just begun self learning programming, this explanation about machine learning is very clear and understandable. Thank you!
@LaurenceMoroney3 жыл бұрын
Great to hear Aysha! Thanks! :)
@decryptifi22653 ай бұрын
Best intro to machine learning I have seen. Thanks a lot Laurence
@shashankbarki70295 жыл бұрын
Was just waiting for this from Lawrence. I m learning machine learning daily and time to take this to next level. Thanks Lawrence and Google and tensor flow
@laurencemoroney6555 жыл бұрын
Thanks, Shashank!
@M1ndV0yag3r3 жыл бұрын
@shashank barki would you mind sharing how you are learning ML?
@jesjames2 жыл бұрын
You know those videos that you start watching and then get glued to them... :D Well done Laurence, in the first few seconds I wouldn't have bet on watching it
@laurencemoroney6552 жыл бұрын
THanks Jes!
@shubhamdeep18042 жыл бұрын
@@laurencemoroney655 k
@Themojii4 жыл бұрын
Subscribed after watching this. Love the way you explain. You explain the concept very clearly and also you add a little bit of the code which gives me a great preparation for the coding application. Keep up the good work Lawrence
@saedsaify99445 ай бұрын
The code is wrong. Not a good sign when the Hello World code from the official channel doesnt work. print(model.predict([10.0])) throws an error, you need to use something like print(model.predict(x=np.array([10.0])))
@William_Clinton_Muguai3 жыл бұрын
In traditional programming, we infer answers after rules act on data, but in ML, we infer rules after answers act on data. Got that really straight.❤️❤️❤️❤️
@LaurenceMoroney3 жыл бұрын
Nice!
@fet16125 жыл бұрын
Hello, Laurence Moroney, Astounding presentation. How quickly and how brilliantly you put such a huge task look so simple. I must admire your ability. Keep up the good work, thumbs up here.
@laurencemoroney6555 жыл бұрын
Thanks Fet!
@aytunch5 жыл бұрын
Laurence keep more videos coming:) Was a pleasure watching and learning
@laurencemoroney6555 жыл бұрын
Working on it! :)
@albertastillero1085 Жыл бұрын
Subscribed Sir Laurence! Thanks for the simple yet concise explanation in a short time.
@vishalrana13735 жыл бұрын
Brilliant explanation Laurence.
@laurencemoroney6555 жыл бұрын
THanks, Vishal
@bilboswaggins76294 жыл бұрын
Amazing video. Though I do feel the need to say that playing scissors with the thumb out is sketchy and looks like you are trying to straddle the line between scissors and paper.
@badsanta73562 жыл бұрын
It's almost paper like 60 % paper
@mariomacias4476 Жыл бұрын
@@badsanta7356 mnb 0:01
@mariomacias4476 Жыл бұрын
😮😮😅 nnnjnhj😮😢😅😊😊
@KefyalewAbdella Жыл бұрын
can you give me the documentation, and if you would help me you con assist me to make it my final project
@nathanas645 жыл бұрын
This is one of the clearest explanations ever ! Great job!
@laurencemoroney6555 жыл бұрын
Thanks!
@nathanas645 жыл бұрын
Laurence Moroney what a service to humanity that google is releasing tensorflow to the public domain. The benefit that will come out of this -and i don’t mean financial - is immeasurable. It’s like IBM releasing the paper on FFTs in the 60s !!
@johnlao14695 жыл бұрын
Im really glad tensorflow by itself is doing tutorial right now. Because i have this research project that implements machine learning and it helps me to learn and understand each lesson about it.
@laurencemoroney6555 жыл бұрын
That's great, thanks for letting us know! :)
@brendonprophette88903 жыл бұрын
my procrastination has transcended to new levels I am watching this instead of studying for my 2 finals or working on my 4 remaining projects with less than 2 weeks left to finish all of those things lol
@Intrinsion3 жыл бұрын
Did you finish?
@brendonprophette88903 жыл бұрын
@@Intrinsion yea, only because my software development professor decided to make the final project optional
@LaurenceMoroney3 жыл бұрын
Oops! Sorry about that! :)
@venugopalt68613 жыл бұрын
This is awesome mike the best explanations i have ever made on Machine Learning and i got a feel and beauty of nerual network when i heard your class , great job , keep posting like these cheers
@LaurenceMoroney3 жыл бұрын
Thanks so much! :)
@rohanmanchanda52503 жыл бұрын
You're welcome kid.
@rohanmanchanda52503 жыл бұрын
@@LaurenceMoroney I didn't notice it was actually you sir. This function cannot recognise polynomials like square equations or cubic. I provided it with xs as 1.0, 2.0... and ys as their square, but it never got any better than a loss of 6.2222, and if I entered 10, it gave me a value of 36.67... ???
@AshishChauhanYoungy5 жыл бұрын
Hey there Lawrence. Really good explanation. Thanks for putting together. Just wanted to ask how often these vids will come out?
@dimonfrekpdimonfrekp30085 жыл бұрын
www.coursera.org/instructor/lmoroney
@ohlssonster5 жыл бұрын
Once per second
@laurencemoroney6555 жыл бұрын
This series is 4 videos, coming out weekly
@javiersuarez84155 жыл бұрын
@@laurencemoroney655 4 is a small number. 😐. When is estimated second season release?
@LaurenceMoroney5 жыл бұрын
@@javiersuarez8415 Haha -- I haven't gotten around to filming a second season yet, but as they look like they're going to be popular, I should get moving on that... :)
@scientistgeospatial5 жыл бұрын
You're genius Laurence, for sure! Excellent demonstrations and brilliant examples.
@laurencemoroney6554 жыл бұрын
Thanks!
@keithprossickartist2 жыл бұрын
Thank You for explaining this so clearly and eloquently.
@deborahayeni_ Жыл бұрын
Thanks. You just spiked my interest in this course
@SK-lm2zs4 жыл бұрын
this video is soo good❣️ I watched this many times to understand what ML is. I studied Matlab at University, this video is also good for review of ML😊
@koushikdatta51305 жыл бұрын
Loved the intro. Waiting for the next video.i was searching for such tutorial for long time, finally got one. Thanks tensor flow.
@laurencemoroney6555 жыл бұрын
Welcome! Thanks for watching!
@DatascienceConcepts4 жыл бұрын
Nice explanation. I am also building a course on ML in Python (for a University) more from an implementation perspective. This surely helps!
@khadijahalsmiere37185 жыл бұрын
Wow , I’ve been waiting for such an opportunity to learn machine learning from an expert . Thank so much and keep it up , we need it for our big project GOD’s willing .
@laurencemoroney6555 жыл бұрын
I hope it works out :)
@khadijahalsmiere37185 жыл бұрын
Thanks a lot
@jng711b3 жыл бұрын
Great explanation. I am taking Lawrence's courses in ML / Tensorflow. Very useful. Thanks so much!
@LaurenceMoroney3 жыл бұрын
Thanks John!
@joseortiz_io5 жыл бұрын
I love these tutorials and videos that Tensorflow puts out. Super informative. Thank you Laurence, what a great video! You bet I'll keep watching these series! Have a fantastic day everyone!😁👍
@laurencemoroney6555 жыл бұрын
Thanks! :)
@PareshTadvi-qr1to Жыл бұрын
...
@PareshTadvi-qr1to Жыл бұрын
..
@PareshTadvi-qr1to Жыл бұрын
Nj... N
@AlexeyArtamoshin4 жыл бұрын
Extremely helpful explanation, thank you very much!
@guyshur26884 жыл бұрын
Great video. You mention the small error is due to uncertainty due to the low sample size, is it not possible that the model simply descended to a not quite accurate relationship? Granted the cause would still be low sampling but the main question is if the error is explicitly programmed to reflect uncertainty because the input could still be 19 and be labeled uncertain.
@florianeck65124 жыл бұрын
finally some video that makes digging into the topic understandable.
@LaurenceMoroney3 жыл бұрын
Thanks!
@sriti_hikari4 жыл бұрын
That was a very good explanation, thank you!
@ademolaorolu59302 жыл бұрын
Precise and Concise. Thank you Lawrence!
@theprimordialdude11384 жыл бұрын
Very good explanation. Easy to understand. Continue the series
@LaurenceMoroney4 жыл бұрын
We are :)
@rishishkumarnaik99545 жыл бұрын
Hey Lawrence, its really a pleasure to learn from your videos. Waiting for more videos to come and take us deep into AI.
@laurencemoroney6555 жыл бұрын
Thanks Rishish! :)
@MikesTechCorner5 жыл бұрын
In the math example we get a NAN when typing in other x values in the array like 100. Do you know why? from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import numpy as np x = [-1.0, 2.0,4.0,6.0,7.0, 100.0] y = [] x_test = [10] for i in x: y.append(i*2 +5) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(units=1, input_shape=[1]) ]) optim='sgd' model.compile(optimizer=optim, loss='mean_squared_error') xs = np.array(x, dtype=float) ys = np.array(y, dtype=float) model.fit(xs, ys, epochs=500) print(model.predict(x_test))
@LaurenceMoroney5 жыл бұрын
Data should really be normalized when fed in for training, or the optimizer/loss won't work. We get away with it when we use small values, but that gets exposed at larger values. To do this you should normalize the training/test data and then retrain.
@kamilpadula71522 жыл бұрын
this open for me new world
@marcosdearruda775 жыл бұрын
Nicely done. Thank you so much for sharing this video with us,
@mihaelacosinschi Жыл бұрын
here's the code needed from the video, if anyone wants to try it out import tensorflow as tf from tensorflow import keras import numpy as np model=keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer="sgd", loss="mean_squared_error") xs=np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float) ys=np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float) model.fit(xs, ys, epochs=1100) print(model.predict([10.0])) I am an absolute beginner and wanted to run the code, but could only get errors at first. In case anyone needs this broken down, I added the first 3 lines that are necessary to run the tensorflow and keras libraries, installed previously via terminal.
@ConsultingjoeOnline4 жыл бұрын
Great video! THANK YOU. I've been trying to get to this point for a while. Getting everything setup is a hurdle in itself. At least with OSX
@muhendishanimm3 жыл бұрын
I really loved the videos then liked all before watching cos i am sure I will watch all :D inshaallah :D Thanks for yoru effort!
@LaurenceMoroney3 жыл бұрын
Welcome!
@quegiangson37864 жыл бұрын
It's so amazing explanation. Thanks a lot Lawrenece !
@laurencemoroney6554 жыл бұрын
Thank you! :)
@logicfacts99645 жыл бұрын
I didn't understood what exactly is input shape and why it is 1? Because is accepts our input array by only 1 value at the time or there is other reason? Also I can't understand how and why NN with just 1 neuron produces 18.99 instead 19 because 1 neuron means that it can predict only exact value and any deviation is inposible?
@laurencemoroney6555 жыл бұрын
Input shape is 1, because we just want to predict the result for 1 value input (i.e. 10). Neuron won't get *exact* value because it deals in probabilities, not certainties, so the prediction is a very high probability that the answer is 19, but when evaluating that as a number you get something close to 19
@aradaizlebeni1 Жыл бұрын
very good and simple lecture. thank you.
@dipankarkaushik52855 жыл бұрын
You missed 'tf.keras.' in the 1st line. So, model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) will be the correct code.
@LaurenceMoroney5 жыл бұрын
oops!
@hobypd4 жыл бұрын
I have a question on something I don't understand: Dr. Moroney said that prediction is not perfect because the computer is trained for 6 values that form a straight line, but outside those 6 may be not straight (although it is highly probable that they are straight). I don't get this point: since it is a NN with only one neuron, so it has to be a straight line the prediction (it should be like a linear regression). Am I correct? Or did I interpret something wrong?
@ashwinsenthilvel49765 жыл бұрын
Hi Lawrence, I am trying to implement same code with two inputs X1 and x2. I am finding difficulty in 1) how to specify x value like how the matrix of the two input should be. 2)what must be the input shape specified here. Could you please help with this.
@moacirfranciso96452 жыл бұрын
Hinos
@psaikrishna904 жыл бұрын
Wow such a great explanation with a simple example. Thanks.
@laurencemoroney6554 жыл бұрын
Thanks! :)
@압둘하미드이드리스8 ай бұрын
Great, more inquisitive on the subject
@acutu552 жыл бұрын
Great Introduction!
@donkeshwarkavyasree86323 жыл бұрын
This video's are literally making me feel fascinated to learn ML. You are definately life saver 🙏. Thanks a ton 👍
@LaurenceMoroney3 жыл бұрын
Very welcome! :)
@sidtv25422 жыл бұрын
Videos like this > A $5,000 college course
@autosales319610 ай бұрын
Rinse spin repeat.×3 or X4 to remove one situation. ......I can do this. Thanks for the patience ☺️ God sure made a blessing in you!
@zaknikov5 жыл бұрын
Very good explanation thank you
@laurencemoroney6555 жыл бұрын
Welcome! :)
@Pa-ow1nj5 жыл бұрын
please more of that its so good explained
@laurencemoroney6555 жыл бұрын
Working on it! :)
@NicO-cm2xo5 жыл бұрын
Awesome master teacher Lawrence.. now i need autoML to learn ML
@laurencemoroney6555 жыл бұрын
Haha, so do I! :)
@nabhannoorish51004 жыл бұрын
Thanks for teaching this. You made this very easy
@gennadyplyushchev14655 жыл бұрын
Great and simple video! Thank you!
@laurencemoroney6555 жыл бұрын
Welcome! :)
@thecandel54794 жыл бұрын
You are very very good scientist. I thank you very much. I am from Jordan. I study master in computer and networks.
@laurencemoroney6554 жыл бұрын
Thanks Raed!
@SamuelLawson7 ай бұрын
Running that code, I got an error: `ValueError: Unrecognized data type: x=[10.0] (of type )` -- fixed when I changed the predict() arg to `np.array([10.0])`
@skewd25285 ай бұрын
Do print(model.predict(np.array([10.0], dtype=float))) instead
@kartikaykhosla12015 жыл бұрын
Hey Lawrence just wanted to know is it a weekly series or will just come whenever next is available
@laurencemoroney6555 жыл бұрын
Goal is weekly
@jfl1014 Жыл бұрын
Very good teacher thank you
@simonwhitehead28575 жыл бұрын
Ok, you show some code that builds and trains the model before making a prediction. I found that on subsequent runs the accuracy increases, I realize that for some applications this can result in 'overfitting'. So once I am happy with the level of accuracy ,how can I apply the trained model without running the training (how/where is the model saved?)? Really love this course my head is working overtime in thinking of ways I want to try and apply it!
@BiancaAguglia5 жыл бұрын
Nice, clear explanations. This series is off to a good start. 😊 Looking forward to seeing more videos.
@laurencemoroney6555 жыл бұрын
Thanks Bianca!
@slvrpltd2 жыл бұрын
stupid question: where do i tell the thing that the relation between x and y is a math problem? how does it know that it has to calculate something and not come up with something else?
@piers91865 жыл бұрын
Excellent. When does No.2 arrive?!
@laurencemoroney6555 жыл бұрын
Weekly
@naduniranasinghe65934 жыл бұрын
super explanation. you are a great teacher
@LaurenceMoroney4 жыл бұрын
Thanks Naduni!
@DirkJanUittenbogaard10 ай бұрын
Great video Laurence! For me the code you used failed "ValueError: Unrecognized data type: x=[10.0]". After changing the last line (print model predict) to this it worked: print(model.predict(tf.convert_to_tensor([10.0])))
@hamsterman15714 ай бұрын
giving xs and ys are array but as an input u are using a list '10.0' so its error, u can also try : predict(np.array([10.0])))
@zhang202444 жыл бұрын
So nice , easy to understand , Thanks
@laurencemoroney6554 жыл бұрын
Glad you like! :)
@codewithluq5 жыл бұрын
very nice way of teaching
@LaurenceMoroney5 жыл бұрын
I'm trying! :)
@ericascheffel45273 жыл бұрын
Excellent explanation, thank you very much!
@LaurenceMoroney3 жыл бұрын
You're welcome, Erica!
@sunilkb1444 жыл бұрын
i have typical use case such as to predict the value of y for a given x but the logic for calculating the value of y ( ie in this case y=2x-1) is changing on daily basis. can tensor flow can predict this kind of data
@laurencemoroney6554 жыл бұрын
If data changes, model should be retrained
@krishnachauhan28504 жыл бұрын
Please make a series on audio data loading n analysis using tensorflow
@Arnau_0_04 жыл бұрын
Really good explanation!
@abdenourdjennane93094 жыл бұрын
Thanks. I like this way of teaching.
@TudoEstudado Жыл бұрын
this is so much difficult how do I landed here? try to only start something but I do not know even where to start. too much info
@kvenkataraju5 жыл бұрын
Thanks for explanation, if I feed x and y with more values like xs = 2000.0 and ys = 3999.0 (2x-1), my loss becoming infinite. Why that is happening? Great if you share more details on it.
@laurencemoroney6555 жыл бұрын
Data being fed into the neural network should really be normalized. I.e. made to be between 0 and 1. We get away with not doing that with the smaller values here, but if we don't d that, they we'll usually end up breaking the loss function / optimizer and getting infinite loss etc. So if your range of Xs were from 0 to 2000, and your range of training Ys were (2x-1), you should divide all Xs by 2000, divide all Ys by 2000, train on that, and when you do a prediction, divide the input by 2000, and multiply the output by 2000 etc.
@AnandBaburajan5 жыл бұрын
Here's the working code: from tensorflow import keras from keras.models import Sequential from keras.layers import Dense import numpy as np model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) model.compile(optimizer='sgd', loss='mean_squared_error') x=np.array([-1.0,0.0,1.0,2.0,3.0,4.0], dtype=float) y=np.array([-3.0,-1.0,1.0,3.0,5.0,7.0], dtype=float) model.fit(xs,ys,epochs=500) x1=np.array([10.0], dtype=float) print(model.predict([x1]))
@regeleionescu9355 жыл бұрын
Hi, thank you for the great video! I have been playing around with your example using different sets of numbers. For example, I extended the first set from 1.0 to 12.0 and for the second set I used the days of the month(like 31, 28, 31, 30 etc). With a set of 12 pairs it worked fine. It managed to predict the 13th month as being 31 days. Then I wanted to be smarter and I extended the set of data to 24 pairs, basically repeating one year and I tried to predict the 25th and the 26th month length. The problem is that with 24 pairs of numbers the error keeps growing to infinite and the final result is NaN - I wonder why?
@laurencemoroney6555 жыл бұрын
Yeah -- when you start using a lot of numbers the error rate grows, because the dataset isn't normalized. Try normalizing, then learning from the normalized values, and then denormalizing afterwards.
@regeleionescu9355 жыл бұрын
@@laurencemoroney655 Thank you very much for your kind answer!
@kvenkataraju5 жыл бұрын
@@laurencemoroney655 Hi, you mean normalizing the data? how to do that? is that by adding normlization layer?
@alexandeap5 жыл бұрын
Excelente explicación. Muchas gracias pero Dónde están los demás videos? Podría gentilmente compartirlos intente buscar el curso en coursera pero no lo encuentro a usted y seria bueno que comparte este curso en coursera.
@laurencemoroney6555 жыл бұрын
Coursera Course: www.coursera.org/learn/introduction-tensorflow/ Rest of the videos will be published on this channel
@alexandeap5 жыл бұрын
Ohh thanks very much for the information. Best regards.
@oneproductionman4 жыл бұрын
What I really want to know is what exactly are the things happening with that single neuron/layer... Forgive my poor understanding but this video is just like saying, "if you put a dough in the oven and turn it on, it will come out as bread"... The contents of the dough was explained but I would like to know the mechanism in the oven and how it turned the dough into bread.
@LaurenceMoroney3 жыл бұрын
Check out Andrew Ngs course. He'll teach you the chemistry of why dough becomes bread.
@chrismorris52415 жыл бұрын
Rules + data vs. answers + data. Pretty good.
@laurencemoroney6555 жыл бұрын
Thanks!
@laurencemoroney6555 жыл бұрын
Thanks!
@TopVideos-ln2ns4 жыл бұрын
What programing language to use? More recommended .. and thanks
@laurencemoroney6554 жыл бұрын
For this -- Python
@hemakumargantepallidataandai4 жыл бұрын
Awesome presentations skills.
@murmodeus4 жыл бұрын
I tried to feed the values for "y = x² + 5" but the algorithm failed to predict the result. I guess this setting is only good for "y = mx + n" kind of equations. I wish I'd understand the reason though.
@MikeKay19784 жыл бұрын
I did the same and I guess since there is only one neuron it can only find one weight i.e factor and a bias i.e offset. So you will need more neuron i.e a bigger nn to be able to handle x^2 polynomials.
@alessandroruggiero89325 жыл бұрын
Can i use purhon 3.7 or have i to use 3.6 as before
@laurencemoroney6555 жыл бұрын
Sure
@canjohn5 жыл бұрын
Great intro, however how often are you planning to release new chapters? There are tons of materials to learn ml on the internet and even if it's coming from you, directly from tensorflow devs, waiting for a 6 minute new episode for 4 days isn't particularly good I guess.
@laurencemoroney6555 жыл бұрын
Doing these weekly
@RandomGuy-hi2jm5 жыл бұрын
Plz be regular and consistent. 😊
@Stwinky5 жыл бұрын
Looks like a job for normalization 😉
@laurencemoroney6555 жыл бұрын
Trying!
@RandomGuy-hi2jm5 жыл бұрын
@@laurencemoroney655 thanks.. Loved ur Videos too knowledgable
@rajansaharaju14275 жыл бұрын
eagerly waiting for part-2
@laurencemoroney6555 жыл бұрын
It's alredy out. Part 3 next week.
@AbhishekKumar-mq1tt5 жыл бұрын
thank u for this awesome video
@laurencemoroney6555 жыл бұрын
You are welcome! :)
@AssholeCanadian4 жыл бұрын
Here's a dumb question from a guy who doesn't know anything (that I couldn't find a clear and obvious answer for): Does Tensorflow send your data away for remote processing, or is it / can it all be done locally to the machine where the code is written?
@LaurenceMoroney4 жыл бұрын
Neither. As a developer you can train locally on your machine, or you can create a distributed network to train on, and 'where' that distributed network is is entirely up to you.
@TheCyberCraft4 жыл бұрын
Lawrence, great job man! thank you so much
@laurencemoroney6554 жыл бұрын
Thanks! :)
@papareddysrinivasulureddy75914 жыл бұрын
Sir is it important to study complete process of all machine learning algorithms or it's just enough to know the application of each algorithm . please tell
@the_bitcoin_guy4 жыл бұрын
I feel like Neo : "I know kung fu 🥋! " . That was so concise !!! Thank you very much ...
@LaurenceMoroney4 жыл бұрын
haha! Thanks :)
@alex90463 жыл бұрын
Laurence will do that to you lol, amazing teacher
@prathameshdinkar29664 жыл бұрын
Nice! but there is a bug in the last example of the colab sheet - when u try to stop training if the accuracy becomes more than 90%
@laurencemoroney6554 жыл бұрын
I'll check it out
@adityadudeja11264 жыл бұрын
on which data losses are calculated because the model has seen train_data and train_labels
@laurencemoroney6554 жыл бұрын
It has seen those, and it calculates loss using those. The model will measure its performance against the known values, and calculate which ones it got 'right' and which ones it got 'wrong', with the loss function reporting loss on these.
@angeloabritaa5 жыл бұрын
Bom tutorial, aguardando continuação. Like from Brazil hu3br