ТЕНЗОРНОЕ ПРОИЗВЕДЕНИЕ АБЕЛЕВЫХ ГРУПП

  Рет қаралды 46,724

Маткульт-привет! :: Алексей Савватеев и Ко

Маткульт-привет! :: Алексей Савватеев и Ко

Күн бұрын

Пікірлер: 215
@bloonoobchannel6994
@bloonoobchannel6994 3 жыл бұрын
Отличное видео! Показал ему своему младшему брату, который учится во втором классе - ему понравилось.
@ilyazubov2298
@ilyazubov2298 3 жыл бұрын
Он хотя бы в сознании?
@pnipni9440
@pnipni9440 3 жыл бұрын
Ахахаха зачет
@UdarRusskihPudgei
@UdarRusskihPudgei 3 жыл бұрын
Ну, перенос через десяток при сложении как раз во втором классе учат. Так что он некоторым образом знаком с темой ролика.
@igorandante
@igorandante 3 жыл бұрын
Что ж вы так запустили обучение брата? До школы нужно было ему это показывать!
@аавыф-б4о
@аавыф-б4о 3 жыл бұрын
@@ilyazubov2298 бредит, "гомотопическое ядро", "морфизм комплексов", просит дать фактор-группу... но чаще выкрикивает "не ноль!" "не ноль!!!" пока ничего не помогает
@vladsafronov8475
@vladsafronov8475 2 жыл бұрын
Алексей Владимирович, есть два замечательных учебника по алгебре уровня бакалавриата, которые включают модули, тензорное произведение и начала гомологической алгебры, по которым вполне легко учиться самостоятельно: 1) Algebra: Chapter 0, P.Aluffi 2) Abstract Algebra, D.S. Dummit, R.M. Foote В них огромное количество простых упражнений для освоения терминологии. Попробуйте изучать материал по ним, думаю что пойдет быстрее.
@stepesh
@stepesh 2 жыл бұрын
и тут Влад Даммита Фута рекламирует
@PNSolovjov
@PNSolovjov 5 ай бұрын
Книга Картан, Эйленберг. Гомологическая алгебра Это классика
@iconbit9810
@iconbit9810 3 жыл бұрын
Это как нарисовать сову! Рисуем овал...ииии....дорисовываем сову! Всё! Готово
@ДанилПетров-ф8к
@ДанилПетров-ф8к 3 жыл бұрын
Это очень ценный опыт в том смысле, что мы можем наблюдать, как математики думают, когда пытаются постичь область.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
да, размышления вслух!
@Evgenij_Pavenko
@Evgenij_Pavenko 3 жыл бұрын
Зашёл, чтобы впечатлиться от непонятного. Получилось!
@TheOgecca
@TheOgecca 3 жыл бұрын
- Папа, а с кем ты сейчас разговаривал? (С)
@merkurev
@merkurev 3 жыл бұрын
Правильно на тензорное произведение смотреть так: Пусть дано кольцо A, правый A-модуль M и левый A-модуль N. Тензорное произведение M и N - это абелевая группа M*N вместе с билинейным отображением B: M x N -> M*N, такие что любое билинейное отображение M x N -> C в произвольную абелевую группу C является композицией отображения B и единственного гомоморфизма групп M*N -> C. Доказывается, что тензорное произведение существует и единственно с точностью до канонического изоморфизма. Еще более правильно определить тензорное произведение M*N на языке категорий как абелевую группу представляющую функтор из категории абелевых групп в себя, сопоставляющий каждой абелевой группе C абелевую группу билинейных отображений M x N -> C.
@yurilog1139
@yurilog1139 3 жыл бұрын
Епааааа....ть!
@sergeivanovic4721
@sergeivanovic4721 3 жыл бұрын
А это правда настоящий Меркурьев????
@АнтонИцкович-х7у
@АнтонИцкович-х7у 3 жыл бұрын
Да да реально. Но послушай, из-за аддитивности абелевых групп сфер минковского-вайтхеда не удастся выделить полиморный изомерный непротиворечивый комплекс по идеалу порожденному на 2м утверждении леммы пуанкаре! Понимаешь??
@user-nm7sp5xj7q
@user-nm7sp5xj7q 3 жыл бұрын
я могу так: каждое 3х мерное компактное многообразие без края гомеоморфно 3х мерной сфере.
@alexw6751
@alexw6751 3 жыл бұрын
И наиболее приятные доказательства стандартных фактов о тензорных произведениях получаются, если сначала установить некоторые самоочевидные леммы о функторах полилинейных отображений, а затем уже перейти к их представляющим объектам.
@lagduck2209
@lagduck2209 3 жыл бұрын
После 10кратного просмотра всего курса эзотерической теории групп Романа Михайлова, и изучения википедии, - какие-то термины и общие понятия знакомы, некоторые даже как будто понятны, (или только кажутся, проверить невозможно). Самому с нуля разобраться в этом невозможно, или по меньшей мере 20кратно сложно, пока найдёшь релевантные источники, чтобы эту "лестницу" построить, от основ до какого-то понимания специальных областей. Математика это натурально вавилонский язык (или универсальный, но от этого не легче), стоит посмотреть любую статью в ветке математики вне знакомого контекста - и эффект: буквы знакомые, слова - нет, и смысла нет, хотя где-то немного угадывается. Углубляешься - только запутаешься. Нужна именно лестница от основ к последующим понятиям, итеративно. Теории схем, категорий, абстрактная алгебра, топология, та же теория групп, теория чисел, теория множеств - даже в рамках академического высшего образования почти невозможно охватить их все, да и кому это интересно..
@Gashman25
@Gashman25 3 жыл бұрын
во-первых, прямую сумму/тензорное произведение абелевых групп можно воспринимать как аналоги объединения/произведения множеств: если в прямой сумме мы берём объединение образующих, то в тензорном произведении мы берём их упорядоченные пары. во-вторых, тензорное умножение фиксированной абелевой группы на другую, которая при этом имеет структуру кольца, можно воспринимать как замену коэффициентов, т.е. таким образом мы получаем возможность умножать элементы нашей группы на элементы произвольного кольца R, а не только на целые числа (иными словами мы дополняем нашу группу до R-модуля, а в случае когда R является полем, то вообще до векторного пространства). отсюда видно, почему произведения из видео ведут себя именно так: если мы домножим группу на Z, то замены коэффициентов фактически не происходит, так как мы уже умеем умножать элементы на целые числа, а если мы домножим Z/nZ на Z/mZ где m, n - взаимно просты, то мы по сути говорим, что умножение на m в Z/nZ теперь является нулевым, а раньше было обратимо, т.е. буквально 1=0, таким образом их произведение действительно тривиально. ну и напоследок тензорное произведение абелевых групп является частным случаем тензорного произведения R-модулей (т.к. абелевы группы = Z-модули), которое определяется в точности также, но только с линейностью по R (при R=Z линейность эквивалентна гомеоморфности).
@DarGViD
@DarGViD 3 жыл бұрын
Гомоморфности*
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
СПАСИБООООО!!!!! Врубаюсь....
@3drugg
@3drugg 2 жыл бұрын
Мне кажется, нельзя как-либо отождествлять тезнорное произведение групп/модулей и произведение множеств, потому что это слишком разные вещи: для абелевых групп (да и модулей) произведение и прямая сумма есть одно и то же (потому что это произведение и копроизведение соответственно, а в категории абелевых групп и модулей это одно и то же).
@alexey_y
@alexey_y 3 жыл бұрын
Вот как Савватеев сказал ,что между этажами математики прыгать нельзя, так и я из всего видоса понял только слово произведение . Да и зачем мне это на первом курсе............
@dibehemoth401
@dibehemoth401 3 жыл бұрын
Такое ощущение, что этот ролик больше для себя записан. Впрочем, от этого не хуже. Когда-нибудь и до этого уровня доберусь, вернусь и пересмотрю. :)
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
так и есть. Я же говорю, "Изучаем математику с Савватаном"! Такая рубрика будет!
@ИвановИван-ь6к
@ИвановИван-ь6к 2 жыл бұрын
@@Маткульт-приветАлексейСавватее Порешай Демидович, для простих смертних будет полезней
@3drugg
@3drugg 2 жыл бұрын
Вроде бы, ответ на вопрос в конце ролика - да, и доказывается это прямой проверкой: Мы хотим доказать изоморфность (A/I) (x) (A/J) и A/(I + J) Строим отображение самым ожидаемым образом: F: (A/I) (x) (A/J) -> A/(I + J) F([a] (x) [b]) = [ab] Корректность F: Если [a] = [a'] в A/I, то ab - a'b = (a - a')b - элемент I, а значит и I + J, то есть [ab] = [a'b] в A/(I + J). Остальные случаи аналогично. Инъективность F: Допустим F([a] (x) [b]) = 0. Значит, ab лежит в I + J, т.е. ab = i + j, для некоторых i из I, j из J. Тогда [a] (x) [b] = ab [1] (x) [1] (модуль плоский) = [ab] (x) [1] = [i + j] (x) [1] = [j] (x) [1] = j [1] (x) [1] = [1] (x) [j] = [1] (x) [0] = 0 То есть ker F = 0, а значит F инъективен. Сюръективность F очевидна: Для любого [a] из A/(I + J) F([a] (x) [1]) = [a] Итого, F - изоморфизм
@georgyzhilinsky
@georgyzhilinsky 3 жыл бұрын
Знаю что такое тензор, что такое абелевость группа, а вместе как торт с кремом. Попытаюсь понять)
@aokigakharamathchannel1958
@aokigakharamathchannel1958 2 жыл бұрын
Потому что тензорное произведение - немного другая тема. То, что тензорное произведение можно использовать для определения тензоров - известно. Обратно, честно говоря, не знаю
@Нежелезныйчеловек-ч7я
@Нежелезныйчеловек-ч7я 3 жыл бұрын
я же не один не понял ни одного слова?
@JurgenHabermas_EU
@JurgenHabermas_EU 3 жыл бұрын
А как же: «Маткульт привет!»
@ОлегКузьмин-к5т
@ОлегКузьмин-к5т 2 жыл бұрын
Пытался на досуге начать разбираться с группами и т.д. - едва уловил отблески основной идеи. Мозг хрустит, при том что и образование "верхнее" техническое, и с матаном проблем не было никогда. Сильная вещь.
@The_Who_Is_Moon
@The_Who_Is_Moon 3 жыл бұрын
Встал из-за стола, подошёл к окну, много думал, плакал
@g0nzalezTV
@g0nzalezTV 3 жыл бұрын
Ну вот, отлично, теперь и я тоже нахожусь в позиции Алексея: вроде бы и всё написанное понял, но что-то не могу нормально в голове себе интуитивно эту конструкцию соорудить, как и не понимаю до конца мотивации к такому извилистому определению)
@kaay8983
@kaay8983 3 жыл бұрын
Можно, наверное, сделать несколько проще, если я правильно понимаю. Выписываем формально тензорное произведение по элементам обоих групп, дальше замечаем, что по определению модуля (можем реализовать скаляр суммированием элемента группы) и тензорного произведения (можем затащить скаляр в одну из частей тензорного произведения) n*а(×)b = a(×)(b+... +b) n раз = а(×)0 = 0
@anastasiak.5635
@anastasiak.5635 3 жыл бұрын
Действительно, намного проще получается.
@levrisfirst3291
@levrisfirst3291 3 жыл бұрын
Это вы, в какой простите палате, пояснительную бригаду нашли ? Я тоже к ним схожу узнаю что да как
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
это про первую задачу из второй главы Атьи? Ну вроде да, но я не искал проще, я пытался понятнее :-))
@OneDull
@OneDull 3 жыл бұрын
Мне кажется, что эта и подобные темы уже больше не про способности, а про мотивацию. Тензорное произведение модулей лично для меня более мотивированным выглядит, поскольку те же конечно порождённые проективные модули играют важную роль в конечномерной геометрии -- они мне ближе в итоге. А заряд мотивации от геометрии мне самому пришёл в тот момент, когда я узнал насколько естественно конечномерные гладкие многообразия оказываются спектрами гладких алгебр. Рассказывается это за 5 минут, но требует обоснований. Хотя уже из самой конструкции понятно, что по алгебре гладких функций (с точностью до изоморфизма) тем способом мы просто обязаны восстановить именно исходное многообразие, слишком естественный подход. Идея такая: будем идти от гладких функций вместо точек, поскольку всё дифференциальное исчисление (для которого как будто и нужна была изначально гладкость исходного многообразия M) завязано только на них. Обозначим через A абстрактную R-алгебру, изоморфную алгебре F гладких функций на M (тут R -- действительные числа). С точки зрения настоящей функции f на M любая точка x выглядит как то, что сделает из f действительное число (подставившись в неё). В частности, точка x теперь является и отображением x: F --> R. При этом x так определяет гомоморфизм R-алгебр (с единицей). 1) Теперь имеет смысл надеяться, что спектр нашей алгебры |A| = Hom(A, R) можно будет как-то отождествить с M. При этом сама A тоже состоит из некоторых функций на |A|, если для a из A и h из |A| тупо положить a(h) равным числу h(a). Как будто так оно и было с f и x. 2) Следующий шаг -- с помощью топологии на R принести топологию на спектр: фиксируем на |A| самую слабую топологию, в которой все a из A непрерывны как функции |A| --> R. Окажется, что теперь |A| и M гомеоморфны. 3) Осталось восстановить гладкую структуру, но у нас уже как раз есть алгебра гладких функций A. С её помощью восстанавливается пучок, говоря, что на открытом множестве U из |A| сечениями пучка будут те функции из U в R, которые локально совпадают с кем-нибудь из A. Эта конструкция не аналогична спектру кольца, но так мы конструктивно восстановим M с точностью до диффеоморфизма. И это совершенно вынесло мне мозг когда-то. Рассуждения по-форме породили в точности всё нужное содержание. Вот уж неожиданная концептуальная победа формы. Честно говоря, запредельно красиво по-моему. Эта красота -- источник мотивации (пусть даже и немного с другой стороны). Всё это очень подробно есть у Джета Неструева.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
приходи на канал, расскажешь мне !!!!! (и слушателям)
@OneDull
@OneDull 3 жыл бұрын
@@Маткульт-приветАлексейСавватее не, я сам довольно поверхностно это понимаю всё равно. Лучше настоящего специалиста позвать.
@3drugg
@3drugg 2 жыл бұрын
Очень интересный комментарий, спасибо большое! Я сам сейчас изучаю гладкие многообразия и это выглядит как удивительно красивый сюжет. Интересно, насколько это "везение", что так совпало, что спектр алгебры гомеоморфен исходному многообразию
@OneDull
@OneDull 2 жыл бұрын
​@@3drugg, насколько я понимаю, это классическая идея геометрий в окрестности алгебраической -- в том или ином смысле полностью подменить геометрический объект функциями на нём (в идеале чтобы функции давали пучок колец, но это всё-таки не во всех геометриях так). Да и работает описанное для любых гладких многообразий, поэтому не похоже на везение. Да, там наверное стоило добавить, что это исходный изоморфизм алгебр A и F сначала естественно определял биекцию |A| и M в пункте 1), потом гомеоморфизм в пункте 2) и в итоге диффеоморфизм в пункте 3).
@prototyperail-gun5589
@prototyperail-gun5589 2 жыл бұрын
Привет от первокурсника с соседних высоток! Не так давно открыл для себя мир алгебры, и вот уже потихоньку втягиваюсь, ботаю по Винбергу и смотрю ваши лекции по теории групп)
@Robinzon__Kruzo
@Robinzon__Kruzo 3 жыл бұрын
Ну без вводного видео или ста грамм не разберешься, а пить как-то не хочется.
@IvanBudylin
@IvanBudylin 2 жыл бұрын
Сегодня будет достаточно простая лекция (с)
@roman_roman_roman
@roman_roman_roman 11 ай бұрын
О гомологиях групп я думаю лет пятнадцать
@КонстантинБлинов-й8с
@КонстантинБлинов-й8с 5 ай бұрын
а когомологии-то нулевые
@СеменИсаев-г9ч
@СеменИсаев-г9ч 3 жыл бұрын
Ничего не понял, но очень интересно ©
@АлександрМихайлов-е8щ
@АлександрМихайлов-е8щ 3 жыл бұрын
... Мы с тобой одной крови, брат...))
@vladimir-kaufman
@vladimir-kaufman 3 жыл бұрын
У меня чувство что они словами и письменами кого-то призывают из иного мира.
@ВалерийКиряков-с6ы
@ВалерийКиряков-с6ы 3 жыл бұрын
Интересная лекция, развивает воображение, приводит в порядок ум, но самое главное побуждает искать новое в нашем мире, где, на первый взгляд, уже все открыто и изучено.
@TheSemenFarada
@TheSemenFarada 3 жыл бұрын
И что вы с ней поняли?
@ВалерийКиряков-с6ы
@ВалерийКиряков-с6ы 3 жыл бұрын
@@TheSemenFarada Уважаемый "УоuТube" её рядом со мной не было, поэтому не переживайте.
@Astro_retired
@Astro_retired 3 жыл бұрын
Большое спасибо за лекцию в Сириусе, было интересно и даже весело)
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
Мы старались с Михалычем!!! Надо собрать кусочками фрагменты лекции, которые были в зале записаны на смартфончики !!!
@ендергрузин
@ендергрузин 3 жыл бұрын
Что здесь происходит. Это ваще какой предмет. Как я сюда попал. Мне страшно. Мама, спаси
@servenserov
@servenserov 3 жыл бұрын
Полез в «шапку» ролика - туда ли я попал? Из четырёх слов в названии понял только одно. Схожу пока к Земскову с Трушиным.
@endlessvd
@endlessvd 3 жыл бұрын
У меня это появилось в рекомендациях, н@я не понял, но очень интересно
@siriusvega9978
@siriusvega9978 3 жыл бұрын
Я так понял, что если посмотреть с верху , то с боку кажется, что с низу ничего не видно. А так отличный ролик. Саватеев лучший !!!!!!!!!!!!!!! От этого мир только выиграет.
@mechmaker9346
@mechmaker9346 3 жыл бұрын
Про факт в конце(набросок доказательства,полное доказательство в качестве упражнения): Обозначать классы эквивалентности будем как [a] ,тензорное произведение при помощи значка #. Пусть A - коммутативное кольцо;I,J - его идеалы.Доказывать то,что нужное кольцо - тензорное произведение будем при помощи основного свойства: Построим билинейное отображение h : A/I x A/J -> A/(I+J) след.образом: h([a],[b]) = [ab].Пусть t : A/I x A/J -> C - билинейное отображение. Построим гомоморфизм g : A/(I + J) -> C след.образом: g([ab]) = t([a],[b]) = ab * t([1],[1]). Легко понять,что это гомоморфизм. Но как понять,корректно ли он задан?Для этого нужно воспользоваться след.рассуждением : Пусть w = i + j принадлежит I + J(i,j принадлежат I,J),[s],[k] принадлежат A/I,A/J.тогда w*t([s],[k]) = i*t([s],[k]) + j * t([s],[k]) = t(i * [s],[k]) + t([s],j * [k]) = t(0,[k]) + t([s],0) = 0. Понятно,что g ° h = t,и что любой подобный гомоморфизм равен g. Следовательно (A/I)#(A/J) ≈ A/(I+J). (То,что где-то я бездоказательно говорю "гомоморфизм" или "билинейное отображение",значит,что возможность доказать это предоставляется читателю).
@vladimirshmarov8781
@vladimirshmarov8781 3 жыл бұрын
В этом рассуждении существенно используется то, что А - кольцо с единицей. Верен ли исходный факт для колец без единицы?
@mechmaker9346
@mechmaker9346 3 жыл бұрын
Вообще это используется и скорее всего да(но хз).Но можно взять как отдельную операцию над кольцами - присоединение единицы и рассмотреть,как она ведёт себя в случае факторизации или взятия тензорного произведения.Мб так что-то выйдет.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
Спасибо!! Буду думать !!!!!!!
@Тарабунга
@Тарабунга 3 жыл бұрын
Господи… как жаль, что я тупая…
@СергейКрасиков-г9и
@СергейКрасиков-г9и 3 жыл бұрын
"Ну это понятно всё, а что делать то...?" Надо идти вынимать Фокса с кичи... 🤣🤣🤣
@agrushnev
@agrushnev 3 жыл бұрын
Что же, абелева группа - это модуль над Z, так что сразу понятно, что такое их тензорное произведение
@aleksanderaksenov1363
@aleksanderaksenov1363 3 жыл бұрын
Как мне видеться стоит как следует разобраться в тензорной алгебре и градуированных алгебрах.Затем все эти цепочки понимать довольно легко
@roman_roman_roman
@roman_roman_roman 11 ай бұрын
Давайте это возьмем и тензорно умножим
@АлександрВласов-с3с
@АлександрВласов-с3с 3 жыл бұрын
Здравствуйте, Алексей Владимирович! Недавно я нашёл, по-моему, отличное определение тензорного произведения линейных пространств: если X и Y - линейные пространства, то можно рассмотреть их декартово произведение, то есть пары (x, y) со всеми их формальными линейными комбинациями, а потом факторизовать это множество: (x1 + x2, y) ~ (x1, y) + (x2, y); (λ x, y) ~ λ (x, y) и тд. Как мне кажется (могу ошибаться, конечно же), для групп тоже можно попробовать сделать так: Берём их декартово произведение G x K со стандартной операцией (g, k) + (g', k') = (g+g', k + k') и так же его (декартово произведение) факторизуем: (g1 + g2, k) ~ (g1, k) + (g2, k) и (g, k1 + k2) ~ (g, k1) + (g, k2). По крайней мере, кажется, тензорное произведение Zm на Zn получилось 0. Если, опять же, всё что я написал не бред...)))
@namespace17
@namespace17 3 жыл бұрын
Нет, там берется не декартово произведение, а очень огромное и страшное линейное пространство, где все элементы декартова произведения являются базисом (и как следствие линейно независимыми). То есть (x1,y1) + (x2,y2) равно только само себе, а не (x1+x2, y1+y2). С абелевыми группами можно провернуть то же самое. Определение так себе, так как в процессе построение тензорного произведения например R^n и R^m (где R - вещественный числа), мы проходим через линейное пространство континуальной размерности. Определение из видео наиболее правильное. А вот эта конструкция нужна лишь чтобы показать, что тензорное произведение всегда существует. Строить через базис для конечномерных пространств гораздо проще.
@АлександрВласов-с3с
@АлександрВласов-с3с 3 жыл бұрын
@@namespace17 А, да, я ошибся с декартовым произведением. Но идея была лишь как раз про то, что можно понять про существование тензорного произведения, лично мне фактор-множество более понятно, чем другие конструкции, несмотря на его патологии, про которые Вы написали. Спасибо
@aleksandrshidlovsky4329
@aleksandrshidlovsky4329 3 жыл бұрын
Вот до чего доводит гениальность.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
но не моя !!!
@canniballissimo
@canniballissimo 3 жыл бұрын
тот случай, когда из названия ролика знаешь только слово "произведение"!
@red_behelit
@red_behelit 3 жыл бұрын
И то в гуманитарном смысле
@canniballissimo
@canniballissimo 3 жыл бұрын
@@red_behelit не, про произведение чисел-то я знаю :D
@suproq
@suproq 3 жыл бұрын
Ну, еще "тензорное" Тензорные ядра)
@canniballissimo
@canniballissimo 3 жыл бұрын
@@suproq все из этих слов я слышал. А вот буквального смысла не ведаю
@аавыф-б4о
@аавыф-б4о 3 жыл бұрын
не, я еще слово "ядро" знаю! это такое круглое, может поэтому и ноль.
@niq1487
@niq1487 3 жыл бұрын
Привет! Вы часто говорите, что мотивацию человека невозможно описать математически. Я понимаю, что это не тематика вашего канала, но мне крайне интересно, что вы могли бы сказать в ответ на идеи Роберта Сапольски о поведении человека. Это достаточно именитый биолог. (понимаю, что апелляция к авторитету - не аргумент, но, возможно, это привлечёт больше внимания) Если кратко изложить их здесь, то наша мотивация определяется нашей биологией и базовыми потребностями, сформировавшимися в процессе эволюции. То есть мы получаем в некотором роде научный детерминизм, и, пусть сейчас мы не можем с высокой точностью угадывать поведение человека - не значит, что это невозможно. Меня волнует этот вопрос ещё со времён школы :D
@salfadelay2157
@salfadelay2157 3 жыл бұрын
воот это норм! спасибо Вам Алексей! А планируется ли когда нибудь в обозримом будущем про тензор Римана рассказать чего нибудь?
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
когда сам вспомню :-))
@kostiantyniusenko5225
@kostiantyniusenko5225 3 жыл бұрын
Для любого коммутативного кольца A, и А-модуля М верно A/I⊗M≅M/IM. Тогда, если М=A/J, верно и A/I ⊗ A/J≅(A/J)/(I⋅A/J)≅(A/J)/((I+J)/J)≅A/(I+J).
@sergeysmirnov8828
@sergeysmirnov8828 3 жыл бұрын
Отличное видео! У каждого человека должна быть своя собственная теория, своё мнение. Так держать!
@tyompavlov5768
@tyompavlov5768 3 жыл бұрын
Посмотрел, сразу на ум пришла фраза про меня: "Штирлиц еще никогда так не был близок к провалу...."
@alexw6751
@alexw6751 3 жыл бұрын
Больше когомологий, этальных, мотивных и разных!
@unique4883
@unique4883 3 жыл бұрын
Пример бы фигуры взять и на практике расписать её.
@channeltimelord9453
@channeltimelord9453 3 жыл бұрын
Увидел заставку, и сразу подумал - ну точно КАТАРСИС будет).
@rueentur
@rueentur 3 жыл бұрын
Смотрю на 1.75х и успокаиваю себя лукавым чувством "ну всё в принципе логично"
@аавыф-б4о
@аавыф-б4о 3 жыл бұрын
да, на повышенной скорости звучит гораздо логичнее!
@денисколдаев-с6й
@денисколдаев-с6й 3 жыл бұрын
Не,надо смотреть на скорости 0.5 под стакан.все становится как пареная репа
@boriskaloshin8989
@boriskaloshin8989 3 жыл бұрын
а у вас нету случайно друга, который придет и расскажет про это популярно на стеклянной доске?
@SIBIRIAKcom
@SIBIRIAKcom 3 жыл бұрын
Я просто читал название минуту потому что красиво звучить.
@taras_anichyn
@taras_anichyn 3 жыл бұрын
Было бы круто Рому Михайлова пригласить. Как раз по этой теме спец.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
приглашал, он не хочет :-(((
@cmezion
@cmezion 3 жыл бұрын
Недавно подписался, хотя в релейтеде часто попадались. Задам вопрос. Тема канала - шикарная, ведущие - шикарные, подача - шикарная. Но кто вам такие превью придумывает? И, главное, зачем?
@basedtourist3198
@basedtourist3198 2 жыл бұрын
Савватан изобретает модули над кольцом целых чисел 26 минут
@Jgxfgb
@Jgxfgb 3 жыл бұрын
Превью ништяк👍
@knims7552
@knims7552 2 жыл бұрын
Где-то на 10 минуте я словил катарсис, а к концу меня окончательно кокнуло...
@ilyakuroptev9501
@ilyakuroptev9501 2 жыл бұрын
Где курс-то? Заинтриговали.
@MikhailBakhterev
@MikhailBakhterev 3 жыл бұрын
Тут, наверное, проще зайти через теорию категорий. Определение, которое Вы дали похоже на обобщённое понятие тензорного произведения в ТК (погуглил, действительно, это обычное тензорное произведение для категорий, взятое в категории абелевых групп). И оно обобщает обычное тензорное произведнние для линейных пространств на языке гомоморфизмов. Проще понять суть, если расписать обычное тензорное произведение в векторных пространствах на языке линейных отображений. Любое тензорное произведние в категориях можно переставлять с копределами, с прямыми суммами, в частности.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
надо врубицца в теорию категорий сперва
@MikhailBakhterev
@MikhailBakhterev 3 жыл бұрын
@@Маткульт-приветАлексейСавватее рекомендую книжку "New Structures for Physics", там отличное быстрое введение.
@3drugg
@3drugg 2 жыл бұрын
А как категорно определяются билинейняе отображения? Наверное, это нужно делать в каких-нибудь абелевых или предаддитивных категориях, чтобы такое вообще работало?
@MikhailBakhterev
@MikhailBakhterev 2 жыл бұрын
@@3drugg Обычно просто берут категорию, где морфизмы - линейные отображения, и от этого уже можно дальше развивать конструкции.
@aleksanderaksenov1363
@aleksanderaksenov1363 Жыл бұрын
Сказать честно ничего лучше лекций А.Н.Вавилова по алгебре групп я не смотрел,егоилекции лучше сухих учебников
@AleXoundOS
@AleXoundOS 3 жыл бұрын
Когда уже пойдут видео по теории категорий?)
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
когда я сам её изучу (или хотя бы начну изучать :-))
@taidamaru6693
@taidamaru6693 3 жыл бұрын
Не про тему ролика, но хочу давно спросить, насколько хороша Вторая школа (лицей в Москве) для изучения математики?
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
отличная
@ROMPJ
@ROMPJ 3 жыл бұрын
Господи... Какое холодное ноябрьское дежавю.. 25 лет назад. Хожу по библиотекам ищу книги чтобы хоть что-то понять в гомологиях и ничего не понимаю. Вкладываю в голову а оно не помещается и выпадает. Только из жалости преподавателей матфак закончил.
@awesapog5146
@awesapog5146 3 жыл бұрын
круто, ничего не понял, но интересно
@user-PravoVeda
@user-PravoVeda 3 жыл бұрын
в лабиринтах князя тьмы блуждая искушённый ум находит "смысл".
@ВадимВласюк-я6у
@ВадимВласюк-я6у 3 жыл бұрын
Дружище, спасибо за Ваши старания! Первое впечатление: Ничего не понял, но очень интересно!! ...Смею Вас успокоить, сказав, что отображение - всегда нулевое (в понимании Ваших утверждений). ...Если Вы живете в Гатчине, давайте будем делать утренние пробежки вместе. ...Вы часто делаете акцент на количественном описании слагаемых, пренебрегая вектором градиента Вами же описываемых объектов. ... Очень внимательно наблюдаю за Вашими трудами. Спасибо! Вы - гений! ...А бегать и отжиматься от пола - тоже надо! Очень хочу с Вами познакомиться и общаться! А давайте по WhatsApp будем делать утреннюю зарядку (?) ! Жду ответа!
@kamik111
@kamik111 3 жыл бұрын
Я вроде искал видео с котиками, как я сюда попал...
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
искал с котиками, нашёл с (математическими) наркотиками :-))
@Kantor2209
@Kantor2209 2 жыл бұрын
Где-то видел, пол-листа формул и уравнений и выаод: теперь мы уверенно можем сказать, что 2*2=4.)) p. s. физики шутят.
@MrKCTT
@MrKCTT 8 ай бұрын
Маловато, там где-то несколько страниц надотесли выводить из аксиоматики пеано
@ВалерийКиряков-с6ы
@ВалерийКиряков-с6ы 3 жыл бұрын
И все-же, после вторичного просмотра ролика и прочтения комментариев у меня зародились смутные сомнения относительно единого понимания как предмета обсуждения, так и подходов (логики решения). Не являясь специалистом в теоретической математике выскажу некоторые свои сомнения. Постановка задачи достаточно расплывчата, что влечет и разное понимание участников обсуждения. При обосновании своего решения участники часто забывают в какой логике они дают обоснование, перескакивая с одной логики на другую и достраивают собственную аксиоматику на лету. Использование тензорного анализа представляется мне как нечто чужеродное из какой-то другой "оперы" . Использование интуиционизма, которым Алексей стягивает свои обоснования в целое не представляется достаточно обоснованным. Впрочем и сам интуиционизм мне не сильно нравится. Прошу не относиться к сказанному выше слишком строго и любую критику в свой адрес приму с благодарностью.
@ТоварищКосмонавт-с5н
@ТоварищКосмонавт-с5н 3 жыл бұрын
Максимально охуевать я начал с одиннадцатой минуты. Спасибо за видео
@sergeysmirnov8828
@sergeysmirnov8828 3 жыл бұрын
Похоже на Шифр Хилла. Вы правы
@балковчанин
@балковчанин 3 жыл бұрын
я звук выключу? без обид)
@blufoxserge
@blufoxserge 3 жыл бұрын
А нельзя ли это геометризовать на доске?
@АндрейИванов-з4щ1щ
@АндрейИванов-з4щ1щ 3 жыл бұрын
Это так появлялся сценарий фильмов "Матрица"?
@TheSlonik55
@TheSlonik55 3 жыл бұрын
Матрица и тензор все таки различные понятия.
@alexandrkornev720
@alexandrkornev720 3 жыл бұрын
Алексей, есть убойный для интуиции пример. Тензорный квадрат квазициклической группы это ноль.
@alexandrkornev720
@alexandrkornev720 3 жыл бұрын
А отсюда следует интересный вывод. На аддитивной квазициклической группе нельзя определить нетривиальное умножение и превратить её в кольцо. Все очень просто доказывается.
@Serg63ryba
@Serg63ryba 2 жыл бұрын
23.54 .....можем тензорно зафигачить.... единственное понятное слово
@gilyar96
@gilyar96 3 жыл бұрын
Зашёл чисто комментарии почитать. В удивительное время живём, плеваться нельзя, кругом одни кандидаты, доценты и доктора, только вот и наука в жопе, и сраный саморез закрутить некому.
@аавыф-б4о
@аавыф-б4о 3 жыл бұрын
"сраный саморез закрутить некому" ну вот потому что отвертка ентому саморезу не гомологична оказалась - поэтому и не получается! но математики уже бьются над этим скоро победят - и все саморезы окажутся вкрученными. даже в магазине уже сразу такие покупать будете.
@sobaken2283
@sobaken2283 2 жыл бұрын
Показал математичке, с тех пор она больше не появлялась в нашей школе
@tempjob2
@tempjob2 2 жыл бұрын
Так а с чего начинать про гомологию?
@masterpeace8539
@masterpeace8539 3 жыл бұрын
12:07 зазвучал драматичный контрабас
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
это перфоратор у соседей, мы решили на него забить
@roman9598
@roman9598 2 жыл бұрын
Тензоры - единственная тема, что я не понял в универе(
@ВольдемарМаркин
@ВольдемарМаркин 2 жыл бұрын
Страаааашно далеки они от народа. Не увидел области применения. Увы. ("Игра в бисер" - один в один)
@AlexeyMakurin
@AlexeyMakurin 3 жыл бұрын
Добрый день, Алексей Владимирович, подскажите, пожалуйста, как рассчитать эффективность вакцины от Повидла, если известно, что привито 80% населения, а в больницах с заражением Повидлом лежит 65% вакцинированных. И достаточно ли данных для этого расчета? З.Ы. Большое спасибо за ваши просветительские ролики!
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
данные прячут. Но вакцина, конечно, не так эффективна, как её хотели представить. Наверное, в какой-то степени эффективна. Смертность, наверное, ниже при ней. ХЗ - данных не собрать.
@stanislavtihohod
@stanislavtihohod 2 жыл бұрын
Взять бы этого Абеля да за такие группы на два года на Соловки.
@Michael_05573
@Michael_05573 3 жыл бұрын
Из всего сказанного я понял только предлоги...
@DykyKryl
@DykyKryl 2 жыл бұрын
Вот спустится Тот 21 декабря - покажет нам маткульт привет с сакральной геометрией
@БатрадзТасоев-щ8е
@БатрадзТасоев-щ8е 3 жыл бұрын
Интересно было бы узнать про само существование тензорного произведения абелевых групп.
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
да там конструкция формальная есть, но она ситуацию не проясняет (мне)
@aokigakharamathchannel1958
@aokigakharamathchannel1958 2 жыл бұрын
@@Маткульт-приветАлексейСавватее оно в принципе чересчур неявное. Простите, свободный R-модуль на континууме букв - не очень приятная тема
@maximdvornik3326
@maximdvornik3326 3 жыл бұрын
Что такое комплексы, фактор группы и гомологи?
@zlobolet
@zlobolet 3 жыл бұрын
Леша, вынеси попить
@-.-Sky.-.-
@-.-Sky.-.- 3 жыл бұрын
Ноль равен единице. Наконец, прозрачна логика математики внутри некоторых условий. Покрытие кратных как некими экземплярами, произвольно порождёнными, но на самом деле, бесконечно порождёнными. Вроде бы выглядит, что тензорный подход в этом контексте можно восприятия как математическое объяснение такого явления как прогноз на существование жизни в таком пространстве как космос с его специфическими условиями. И даже оговорки уважаемого демонстрируют отношение высших законов к элементам, стремящимся к нулю, но в множественных слагаемых, помноженных на взаимодействия между известными канонами скобок в которые они усиленно закрепляются в кольце макро масштаба управления процессами. Абелевость вселенной математиков воистину обьясняет скорость торможения научного технологического прогресса в отношении экологии распространяемых продуктов деятельности.
@georgie-facet
@georgie-facet 2 жыл бұрын
Желаю харизматичному преподавателю научиться НЕ МЕЛЬЧИТЬ в рисунках и делать больше наглядности на каких-либо макетах
@alexshkut
@alexshkut 3 жыл бұрын
Я дам базу для мышления - заставтьте взлететь 6-ти коптер.
@Nopisk
@Nopisk 3 жыл бұрын
Вы там что, дождь вызываете?! Какието заклинания говорит...
@jack.jay.
@jack.jay. 3 жыл бұрын
Я честно все лекции Ромы Михайлова Просмотрел по теме По кр. мере немного понимаю...
@Маткульт-приветАлексейСавватее
@Маткульт-приветАлексейСавватее 3 жыл бұрын
я тоже пытался, но слетал.
@aleksandrk7828
@aleksandrk7828 3 жыл бұрын
До этого понятие гомологии знал только из химии)
@slavaivanov2454
@slavaivanov2454 3 жыл бұрын
Школьник попросил у милиционера прикурить и бросился бежать. Через 4 секунды милиционер понял, что нужно делать, и бросился вдогонку. Скорость школьника постоянна и составляет 2м/с, милиционер имеет начальную скорость 1м/с и постоянное ускорение 0,2м/с в кв. Через какое время он даст школьнику "прикурить." 15,25 или 16 правильный ответ? Формула не врёт?
@user-nm7sp5xj7q
@user-nm7sp5xj7q 3 жыл бұрын
ОТВЕТ: милиционер не даст школьнику прикурить (см. Федеральный закон №3-ФЗ "О милиции")
@ottistoole957
@ottistoole957 2 жыл бұрын
А как это в жизни пригодиться?) Формулы как будто ракету строить собрался.
@ExpertS555
@ExpertS555 3 жыл бұрын
Для чего оно!!
@kaz3kager934
@kaz3kager934 3 жыл бұрын
Я даже не понял, что в название написано, зачем я сюда зашел???
@rsgrey
@rsgrey 2 жыл бұрын
На прежней работе у меня был возрастной коллега, который рассказал историю из юности, когда тот заканчивал 10 класс. Они с товарищем посещали репетитора по математике - аспиранта из МГУ, чтобы подготовиться к поступлению в ВУЗ. И вот однажды они приходят в назначенное время на занятие, а там аспирант носится сам не свой. В этот день приехал Ландау и сейчас начинается его семинар. Народу много, аспирант ребят на задний ряд усадил в аудитории, только сидите тихо. И вот какое было впечатление у школьника. На второй минуте он уже ушёл в отсечку, так как знакомые для понимания произносимые термины кончились. Поэтому он стал просто наблюдать за творившимся у доски представлением. Провожу без купюр. Непрерывно общаясь с присутствующими на доске быстро писал мелом ухоженный еврей в роскошном синем костюме. Диалог и обсуждение было настолько живым, что он постоянно что-то стирал с доски и писал заново. Вынимая из кармана носовой платок он утирал пот, клал его в карман, брал тряпку и стирал с доски. Накал обсуждения стал так велик, что он увлёкся и уже стирал с доски носовым платком, а тряпкой утирался, а потом засовывал её в карман. В итоге его шикарный костюм с головы до ног стал в меле, на что ему было совершенно безразлично. Так что уважаемый Алексей Савватеев ещё не достиг в своих рассуждениях у доски того уровня погружения в другое пространство)
@dmitrygum
@dmitrygum 2 жыл бұрын
Ландау вроде как физик. Который непонятно чем именно так знаменит, кроме хорошего курса по физике для ВУЗов.
@jack.jay.
@jack.jay. 3 жыл бұрын
О! Савватан до Гомологий, Гомотопий доехал. Интересно.
@dmitriyshymko422
@dmitriyshymko422 3 жыл бұрын
Нихрена не понятно, но смотреть интересно
@ZapiskiSantehnikNiznyiNovgorod
@ZapiskiSantehnikNiznyiNovgorod 3 жыл бұрын
Конеееечно! Ничегошеньки сверхестественного!))))
@Напутикреологии
@Напутикреологии 3 жыл бұрын
да вы мой любимый, а давайте в римановом многообразии?!
О жизни двух главных констант математики
1:24:12
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 396 М.
СЕМЬ ВЕЛИЧАЙШИХ ПРОБЛЕМ ТЫСЯЧЕЛЕТИЯ!
1:23:55
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 413 М.
Haunted House 😰😨 LeoNata family #shorts
00:37
LeoNata Family
Рет қаралды 15 МЛН
Каха и лужа  #непосредственнокаха
00:15
How To Choose Mac N Cheese Date Night.. 🧀
00:58
Jojo Sim
Рет қаралды 75 МЛН
Теория групп и 196883-мерный монстр
21:49
3Blue1Brown translated by Sciberia
Рет қаралды 348 М.
Избранные сюжеты теории вероятностей и теории игр
1:06:50
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 30 М.
Fort Boyard for Mathematicians | Watch Vloggers Tackle Math Challenges
1:00:00
Теорема Гёделя о (не)полноте
1:23:36
Маткульт-привет! :: Алексей Савватеев и Ко
Рет қаралды 91 М.
Алексей Савватеев | Теория игр вокруг нас
1:18:38
Haunted House 😰😨 LeoNata family #shorts
00:37
LeoNata Family
Рет қаралды 15 МЛН