The Answer is Surprisingly Easy! | India National Mathematics Olympiad 2003

  Рет қаралды 17,821

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 54
@mathcanbeeasy
@mathcanbeeasy 2 жыл бұрын
And i came up with a simpler solution. Ok, until 6/5
@mariomestre7490
@mariomestre7490 2 жыл бұрын
Genial
@elroeleykun2803
@elroeleykun2803 2 жыл бұрын
Good
@yoav613
@yoav613 2 жыл бұрын
Notice that 1
@mathcanbeeasy
@mathcanbeeasy 2 жыл бұрын
Unfortunately f(1) is 2, not 3.
@yoav613
@yoav613 2 жыл бұрын
@@mathcanbeeasy 2+2/1-1=2 good to know
@mathcanbeeasy
@mathcanbeeasy 2 жыл бұрын
@@yoav613 auci, sorry, is to early for me. 😂😂😂 I don't know why i made 2+2/2-1. 😂 Congrats!🙂
@davidbrightly3658
@davidbrightly3658 2 жыл бұрын
Best method so far!
@carstenmeyer7786
@carstenmeyer7786 2 жыл бұрын
2:05: Multiply everything by *a^2 + 1* to simplify the polynomial and get an expression for *a^6* dependent on lower powers of *a* , so you can get away with the approximation *a ∈ (1; 2)* : *a^7 + a = 2 * (a^2 + 1) => a^6 = 2 * (a + 1/a) - 1* Note the RHS is increasing for *a > 1* , so we use *a ∈ (1; 2)* to approximate *a^6* via RHS *a^6 ∈ (2 * 2 - 1; 2 * 2.5 - 1) = (3; 4) => ⌊ a^6 ⌋ = 3*
@federicoa3981
@federicoa3981 2 жыл бұрын
Is a lot easier to notice that f(x)=-x^2+1+x-2=-x^2+x-1=0 mod(x^2-x+1) so f(x) is divisible by (x^2-x+1), do long division to find f(x)=(x^2-x+1)(x^3+x^2-x-2), and since the first factor is always positive, a has to solve a^3+a^2-a-2, and from that you can find by hand 3
@Mephisto707
@Mephisto707 2 жыл бұрын
Audio and video are frequently desynchronized in your videos, you should look into it. Awesome content by the way!
@lgooch
@lgooch 2 жыл бұрын
Are you sure it isn’t you? Mine seems perfectly normal
@sirisaacalbertmravinszky2671
@sirisaacalbertmravinszky2671 2 жыл бұрын
On my device the video is way before the sound.
@justinnitoi3227
@justinnitoi3227 2 жыл бұрын
I just found a range of possible a values and continued to shrink the range until 3.06< a^6 < 3.138.
@armacham
@armacham 2 жыл бұрын
A few things you can do. First use RRT to eliminate all rational roots, including all integers. You showed any solution must be positive using derivatives, but you can also do it with factoring. split into three cases: x < -1, x is between (-1, 0), and x > 0. (knowing that there are no integer solutions we don't need to consider any other cases) then you break the LHS into 3 parts and show that all 3 parts are negative, so they can't be equal to RHS which is zero in the first case, where a < -1, you know that a < 0 and -2 < 0. And clearly a^5 - a^3 < 0 in the second case, where a is between (-1, 0), you know that a^5 < 0 and -2 < 0. And clearly a - a^3 < 0 so you can eliminate all negative solutions. knowing that a must be a positive irrational number makes things easier going forward I also did the (a^2+1) thing to show that a^6 must be at least 3 to show that a^6 < 4 I did the following: a(a^4 - a^2 + 1) = 2 a^4 - a^2 + 1 = 2/a a^4 - 2a^2 + 1 = 2/a - a^2 (a^2-1)^2 = 2/a - a^2 this means 2/a - a^2 >= 0 2/a >= a^2 since we know a is positive we can multiply both sides by a without flipping the sign 2 >= a^3 4 >= a^6 thus a^6 must be between 3 and 4
@tianqilong8366
@tianqilong8366 2 жыл бұрын
how do you know "a" has to be irrational number? Is there any proof?
@Aman_iitbh
@Aman_iitbh 2 жыл бұрын
@@tianqilong8366 if it has rationt root it will pass rrt test
@tianqilong8366
@tianqilong8366 2 жыл бұрын
@@Aman_iitbh i see, thank you👍
@armacham
@armacham 2 жыл бұрын
@@tianqilong8366 Yes. There is something called the "Rational Root Theorem" (RRT). When you have a polynomial with integer coefficients, you can use the RRT to get a complete list of all possible rational solutions. Then you can test everything on the list. When you are done testing them, you have found all rational solutions and you know that any remaining solutions MUST be irrational
@jamescollis7650
@jamescollis7650 2 жыл бұрын
My preferred solution, except you missed showing that a^6 doesn't equal 4 :)
@holyshit922
@holyshit922 2 жыл бұрын
Polynomial from this equation can be factored into (a^2-a+1)(a^3+a^2-a-2) This polynomial has only one real root a^3=2+a-a^2 a^6 = (2+a-a^2)^2 a^6 = (a^2-(a+2))^2 a^6=(a^4-2a^2(a+2)+(a+2)^2) a^6 = a^4-2a^3-3a^2+4a+4 a^6 = a^3(a-2)-3a^2+4a+4 a^6 = (2+a-a^2)(a-2)-3a^2+4a+4 a^6 = -a^3+a^2+2a+2a^2-2a-4-3a^2+4a+4 a^6 = -a^3+4a a^6 = -(2+a-a^2)+4a a^6 = a^2+3a-2
@wieuchenst3499
@wieuchenst3499 6 ай бұрын
widzę cię już prawie wszędzie, Jezu
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
love this vid!!
@Эдвард-ч3э
@Эдвард-ч3э 2 жыл бұрын
I found lower bound like in the video, and the upper bound this way: a³+2=a⁵+a⩾2a³ => a³⩽2 => a⁶⩽4, but equality holds only when a⁵=a, so a=0,±1 which are not roots. So a⁶
@Utesfan100
@Utesfan100 2 жыл бұрын
At the 4 minute mark you had bound 5/4 2(x^2+1)/x. But (x^2+1)/x = x + 1/x > x for all positive real numbers, including 3^(1/6). Hence f(x)
@wonjonghyeon
@wonjonghyeon 2 жыл бұрын
At least for me, it is not an easy solution...
@iainfulton3781
@iainfulton3781 2 жыл бұрын
Turn on postifications
@bait6652
@bait6652 2 жыл бұрын
Some calculus and numerical bracketting nice
@bait6652
@bait6652 2 жыл бұрын
Is it safe /robust just to find a in (1,2)...then do the alg-manip to bound a^6 with the lower bound of a/(a^2+1) at a=2 thus bounding 3
@lt97235
@lt97235 2 жыл бұрын
Great Video ! Like all the others. And sir, I would like to ask you a question : How do you make your videos ? On which software do you write your solutions? And audio ? Thank you in advance
@patrickjefferson1438
@patrickjefferson1438 2 жыл бұрын
I do think he is using OneNote and just simply screen record
@tianqilong8366
@tianqilong8366 2 жыл бұрын
Nice manipulation on the final part!
@philippenachtergal6077
@philippenachtergal6077 2 жыл бұрын
0:00 Hum. f(0) = -2 f(1) = -1 f(2) = 24 So there is a root between 1 and 2 which isn't precise enough. now, f'(x) = 5a^4 - 3a^2 + 1 , f'(1) = 3 So first iteration of newton's method tells me to try for a root around 1 - (-1)/3 = 1.3333 If we test at 1.3 we get f(1.3) > 0 If we test at 1.2 we get f(1.2) = -0.03968 1,2 ^ 6 = 2,985984 so argh we are so close to 3 that I can really say if floor(a^6) is 2 or 3 Not without doing calculs that would be quite annoying to do by hand Now, if I were to pretend that I would do this kind of calcul by hand, I would eventually figure out that f(1.201) < 0 and f(1.21)>0 so there is a root between those two. As 1.201^6 > 3 and 1.21^6 < 4 we have floor(a^6) = 3 Answer is 3 (at least one of the answers that is, there might be other roots) But yeah, I wouldn't do that by hand unless I was paid handsomely for it. So another approach is needed.
@philippenachtergal6077
@philippenachtergal6077 2 жыл бұрын
Now. I could actually build on what I found above. If I multiply everything by a, I get a^6 = a^4 - a^2 + 2a (this is of course not true for any a, it's only true for the one a we are hunting for) And now, evaluating the right hand side a at 1,2 and 1,3 reasonably gives that floor(a^6) = 3 as the right hand side evaluates between 3 and 4 for both 1,2 and 1,3. Only "reasonably" however as I think I would need to prove that the right hand side is an increasing function. Still not very satisfactory but more reasonably doable by hand than my first attempt.
@petersievert6830
@petersievert6830 2 жыл бұрын
If you invest a lot of time and sweat, you could come up with 241/200 < a by calculating the according values and accordingly 3 < (241/200)^6 < a^6 . But quite in the contrast I'd rather be interested if it is possible to show that f( 6th root of 3) < 0 and thus a > 6th root of 3 . It was rather easy to show f (6th root of 4) > 0 , so a solution like that would seem a reasonable approach to me.
@와우-m1y
@와우-m1y 2 жыл бұрын
asnwer=2 isit 🤣😅😅😅 mom nag hurt force🤣🤣😅study good bad
@himu1901
@himu1901 2 жыл бұрын
This is crazy
@Ritesh_3.14
@Ritesh_3.14 3 күн бұрын
Ive done using calc , i ruined the beauty of the q😢
@mojota6938
@mojota6938 2 жыл бұрын
The trick at 5:18 seems to come out of thin air. Can you give some insight into how you came up with it?
@vitalsbat2310
@vitalsbat2310 2 жыл бұрын
I guess you could see that it is a part of the sum of cubes
@justanotherman1114
@justanotherman1114 2 жыл бұрын
Or geomtric sum with ratio -a^2.
@NicolasGuerraOficial
@NicolasGuerraOficial 2 жыл бұрын
Because is similar to: 1+a^3 = (a^2 - a + 1) (a + 1) From general formulas: a^3 + b^3 = (a^2 - a b + b^2) (a + b) a^3 - b^3 = (a^2 + a b + b^2) (a - b)
@tianqilong8366
@tianqilong8366 2 жыл бұрын
@@NicolasGuerraOficial That seems to be some nice intuition bro!
@mcwulf25
@mcwulf25 2 жыл бұрын
I kicked myself when he did that. It's a well known result for factorising the sum of two cubes x^3+y^3 = (x+y)(x^2 - xy + y ^2). Appears a lot in number theory problems, usually as a factorisation. But here in reverse.
@screamman2723
@screamman2723 2 жыл бұрын
where does that function come from
@gdtargetvn2418
@gdtargetvn2418 2 жыл бұрын
f(x) is the original equation, f'(x) is its derivative
@screamman2723
@screamman2723 2 жыл бұрын
@@gdtargetvn2418 ohh didn't know that but thanks
@JinhaoPan-np7zy
@JinhaoPan-np7zy 3 ай бұрын
写过
@deejayaech4519
@deejayaech4519 2 жыл бұрын
Use newtons method to find the real root of the polynomial to a good degree of approximation and from there floor(a) is trivial
@predator1702
@predator1702 2 жыл бұрын
Please explain what you are writing....!!!
@johnjiao4564
@johnjiao4564 2 жыл бұрын
I can get one solution a = e^(iπ/3). e^(iπ5/3) - e^(iπ3/3) + e^(iπ/3) - 2 = 0 and e^(iπ6/3) = 1
@johnjiao4564
@johnjiao4564 2 жыл бұрын
My answer is wrong. Should be simplified a^5 - a^3 + a - 2 to a^3 + a^2 - a - 2 = 0, get a^6 = 3.07
@tontonbeber4555
@tontonbeber4555 2 жыл бұрын
"Suprisingly easy" ? lol !! I did it trying a=1.1,1.2,1.21 and finally 1.205 which is very close to the root ... and indeed answer is 3 ... a^6 probably close to 3.06
@billiondream927
@billiondream927 2 жыл бұрын
Let's follow mathcreator #mronkoshorts & #mathmarvelasmr
Solve x! + y! = x^y | Middle European Mathematical Olympiad
9:56
letsthinkcritically
Рет қаралды 17 М.
A Beautiful Cyclic System of Equations | Polish Mathematical Olympiad 2012
11:27
ROSÉ & Bruno Mars - APT. (Official Music Video)
02:54
ROSÉ
Рет қаралды 327 МЛН
Из какого города смотришь? 😃
00:34
МЯТНАЯ ФАНТА
Рет қаралды 1,5 МЛН
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
Can you solve this Cambridge Entrance Exam Question?
24:48
Higher Mathematics
Рет қаралды 794 М.
Factoring Quadratics WITHOUT Guessing Product & Sum
20:01
JensenMath
Рет қаралды 55 М.
A Nice and Simple Equation in National Maths Olympiad
7:41
letsthinkcritically
Рет қаралды 11 М.
An Exact Formula for the Primes: Willans' Formula
14:47
Eric Rowland
Рет қаралды 1,4 МЛН
solving equations but they get increasingly awesome
10:44
blackpenredpen
Рет қаралды 1,1 МЛН
The Most Beautiful Equation
13:39
Digital Genius
Рет қаралды 675 М.
ROSÉ & Bruno Mars - APT. (Official Music Video)
02:54
ROSÉ
Рет қаралды 327 МЛН