the simplest approach to power series.

  Рет қаралды 15,813

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 42
@logician1234
@logician1234 Жыл бұрын
Nice, I'm surprised this approach isn't used more often in teaching
@sochjan
@sochjan Жыл бұрын
The answer is very simple. Integration is simply after power series in Calculus.😅
@NintendoGamer789
@NintendoGamer789 Жыл бұрын
@@sochjan Bruh I had integration covered as the first topic, power series was at the end (for calc 2)
@karlmudsam2834
@karlmudsam2834 Жыл бұрын
Calculus at my school is pretty general, a lot of different students take it, and that means less rigor, which is a shame, cause you miss out on things like this, but I’d argue less rigor is a good thing at that level
@normanstevens4924
@normanstevens4924 Жыл бұрын
If you're doing a rigorous analysis course then you'll have defined the exponential function and sin and cos in terms of power series anyway.
@logician1234
@logician1234 Жыл бұрын
@@normanstevens4924 I always hated this definition, it's literally backwards
@paulgillespie542
@paulgillespie542 Жыл бұрын
Interesting. This provides excellent insight into Taylor series ideas before the introduction of more formal definitions. Well done Professor!
@MathFromAlphaToOmega
@MathFromAlphaToOmega Жыл бұрын
If I recall correctly, the proof of the error bound on the remainder for Taylor series actually uses something like this. If f is a function whose nth Taylor polynomial is P_n(x), then the first n derivatives of P_n match those of f at x=0, and the (n+1)st derivative of P_n is 0. So if we let R_n(x)=f(x)-P_n(x) be the error, we find that the (n+1)st derivative of R_n equals that of f. Then we take M to be the max of |f^(n+1)| on the interval [0,a], and then that's also the max of the (n+1)st derivative of R_n. Integrating n+1 times from 0 to x gives |R_n(x)|≤Mx^(n+1)/(n+1)! for 0≤x≤a.
@goodplacetostop2973
@goodplacetostop2973 Жыл бұрын
17:34
@zlodevil426
@zlodevil426 Жыл бұрын
Good place to st
@atzuras
@atzuras Жыл бұрын
brilliant. also it works to demonstrate sin x < x and lim x->0 (1- cos x)/x =0
@martincohen8991
@martincohen8991 Жыл бұрын
I first saw this in Dorrie's "100 Great Problems of Elementary Mathematics", which is highly recommended.
@wilderuhl3450
@wilderuhl3450 Жыл бұрын
“And that’s a good place to st-“ Dang, he really was eager to stop.
@axelperezmachado3500
@axelperezmachado3500 Жыл бұрын
I mean... it was a pretty good place
@GlenMacDonald
@GlenMacDonald Жыл бұрын
[9:34] Suggestion when doing the induction: assume BOTH equalities are true for n = k, and prove BOTH equalities are true for n = k +1. This avoids the somewhat awkward idea of a "ladder".
@DanielDH179
@DanielDH179 Жыл бұрын
7:55 k should be from 0 to m.
@orenfivel6247
@orenfivel6247 Жыл бұрын
with combined similar approaches of sin, cos (parity approach) and exp (monotone inc appr.), we can obtain power series for cosh and sinh easily
@ThAlEdison
@ThAlEdison Жыл бұрын
I may have missed it, but I would've liked an explanation of why you started with cos(t)
@Jack_Callcott_AU
@Jack_Callcott_AU Жыл бұрын
At 7:45 there is a mistake: m, not infinity, should be the upper bound of summation.
@krisbrandenberger544
@krisbrandenberger544 Жыл бұрын
No, m should be the upper bound for that sum and the one @ 8:05.
@jamesmstern
@jamesmstern Жыл бұрын
That's beautiful.
@mathechne
@mathechne Жыл бұрын
very clear!
@Alan-zf2tt
@Alan-zf2tt Жыл бұрын
I wonder if a visual aid might help? Displaying those inequalities as graphs - well it is easy-peasy now - might suggest a convincing argument (eg proof?) is required for all naysayers? Or even differentiating power series to show - well what it shows and how it links in nicely with integration rules?
@MathCuriousity
@MathCuriousity 3 ай бұрын
Can somebody xplain right off the bat and why it’s always true that that inequalities hold if we integrate both sides of an inequality ? I’d like to look up the theorem or concept!!
@paulgillespie542
@paulgillespie542 Жыл бұрын
Agreed. However, this insight would have helped my initial understanding of Taylor series on a gut level. Wrt DrROBERT's comment.
@CM63_France
@CM63_France Жыл бұрын
Hi, I like this sort of proof "at lower cost". 7:57 : up to m and not to infinity 17:35 : missing "op".
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
Don't you also need something like x < 1? cos x and sin x are bounded, but any finite polynomial will eventually be arbitrarily large for large enough x.
@angel-ig
@angel-ig Жыл бұрын
But not every term in the series is positive. It works for all x
@emanuellandeholm5657
@emanuellandeholm5657 Жыл бұрын
@@angel-ig How can that be? For x large enough, the highest power will just dominate, and that term will grow without limit as x tends to infinity. Edit: Wait, the truncated series will grow indefinitely, but in the right direction, I see that now. You get -oo
@angel-ig
@angel-ig Жыл бұрын
@@emanuellandeholm5657 Yeah, the truncated polynomials are unbounded but the limit series is equal to cos(x) or sin(x) for all x
@MathCuriousity
@MathCuriousity 3 ай бұрын
Why do his arrows look like phallic symbols?!
@CousinoMacul
@CousinoMacul Жыл бұрын
The "fact" in your video is a form of the Cauchy-Schwarz inequality. 😊
@erfanmohagheghian707
@erfanmohagheghian707 4 ай бұрын
Just wondering how on earth you would call this the simplest approach! Lol
@mollejalopez8012
@mollejalopez8012 Жыл бұрын
Me encanta como lo explicas y lo que haces. Cásate conmigo ❤❤
@CM63_France
@CM63_France Жыл бұрын
Ya esta casado, con una niña.
@mollejalopez8012
@mollejalopez8012 Жыл бұрын
​@@CM63_France😢
@DrR0BERT
@DrR0BERT Жыл бұрын
I would not consider this a simple approach, let alone the "Simplest".
@blackcat5771
@blackcat5771 Жыл бұрын
Cool
BEWARE: Monster Integral
19:51
Michael Penn
Рет қаралды 22 М.
a nice product from Ramanujan -- featuring 3 important constants!
20:54
Não sabe esconder Comida
00:20
DUDU e CAROL
Рет қаралды 27 МЛН
А что бы ты сделал? @LimbLossBoss
00:17
История одного вокалиста
Рет қаралды 10 МЛН
黑的奸计得逞 #古风
00:24
Black and white double fury
Рет қаралды 23 МЛН
Kepler’s Impossible Equation
22:42
Welch Labs
Рет қаралды 122 М.
Power Series/Euler's Great Formula
30:50
MIT OpenCourseWare
Рет қаралды 310 М.
a great limit problem.
16:58
Michael Penn
Рет қаралды 13 М.
why some series are "regularizable"
15:08
Michael Penn
Рет қаралды 27 М.
a formula for the "circumference" of an ellipse.
20:45
Michael Penn
Рет қаралды 81 М.
Ramanujan's Master Theorem: One to Rule Them All
17:20
Michael Penn
Рет қаралды 35 М.
Why Runge-Kutta is SO Much Better Than Euler's Method #somepi
13:32
Phanimations
Рет қаралды 129 М.
The overpowered Laplace technique for summing series.
19:21
Michael Penn
Рет қаралды 24 М.
Não sabe esconder Comida
00:20
DUDU e CAROL
Рет қаралды 27 МЛН