The Truly Remarkable Lucas Sequence

  Рет қаралды 14,623

Eddie Woo

Eddie Woo

Күн бұрын

Пікірлер: 9
@myjonpol
@myjonpol 4 жыл бұрын
Although I visited this video to learn about lucas sequence for my programming lessons, it seems I'm being pulled towards loving mathematics. Why do you make things so easy and enjoyable! Love it!
@chrisg3030
@chrisg3030 7 жыл бұрын
You can "lucasate" other sequences too and create equally remarkable ratio constant power sequences. For example take Narayana's Cows going 1 1 1 2 3 4 6 13 19 28 41 60 88 129 . . . (OEIS A000930) where a(n)=a(n-3) + a(n-1) and the ratio constant is approx 1.4656, which I call Moo instead of Phi. Moo raised to the power of a Narayana index number gives you a number in the corresponding lucasated sequence 3 1 1 4 5 6 10 15 21 31 46 67 98 144 211 309. So for example Moo^13 = approx 143.9464. How do you lucasate a sequence? One way seems to be take the number of 1's that a member of this family of sequences (such as Fibonacci) begins with, reduce it by 1, and start with that number. So 1 1 becomes 2 1, and 111 becomes 3 1 1. There are other ways.
@karstenmeyer1729
@karstenmeyer1729 2 жыл бұрын
The sequence of Fibonacci numbers is stronger bond with phi, as any sequence with the same rules but differen starting numbers, The proof you can find, if you use continued fraction.You can represent phi as an infinite continued fraction. But if you broke this infinate continued fraction at any point, you get the ratio of two consecutive fibonacci numbers!
@peawormsworth
@peawormsworth 6 жыл бұрын
lucas(n) = phi^n+(-1/phi)^n It gets closer and closer to an integer, because the remainder is plus then minus 1/phi to the power of the lucas number. ie: the 1/phi difference between phi powers and lucas numbers gets smaller and smaller by phi at each step.
@mainrig4981
@mainrig4981 4 жыл бұрын
What are the Lukas equivalent numbers for this fibonacci numbers: 23.6%, 38.2%, 61.8%. 78.6%, 50%
@chrisg3030
@chrisg3030 6 жыл бұрын
Let's perform the Lucas magic on other sequences. Let's alter them so they retain the same ratio constant (like Phi or 1.6180339987... for Fibonacci and also Lucas) and the same recurrence relation (like a(n) = a(n-1) + a (n-2) for Fibonacci and also Lucas), but start with different positive integers so that each successive term gets much closer to the ratio constant raised to the power of the position of that term, as Eddie demonstrated for the Lucas sequence. One example is the Pell sequence (OEIS A000129) with a recurrence of a(n) = 2a(n-1) + a(n-2) and a ratio constant of (2 + sqrt8)/2 or 2.414213562... otherwise known as the "Silver Ratio". It conventionally goes 0 1 2 5 12 29 70 169 408 985 2378 5741 13860 and so on. But although 2378 is the 10th term, 2.414213562^10 = 6725.9999..., which is pretty far off it or any other of those numbers. How can we magic the sequence up then? Easy. Start 2 2 instead of 1 2 and continue 6 14 34 82 198 478 1154 2786 6726 ... Exercise: do the same for the next "metallic" sequence (OEIS A006190), which has the so-called bronze ratio, (3+sqrt13)/2, and recurrence a(n) = 3a(n-1) + a(n-2) .
@jamesbacon6825
@jamesbacon6825 9 жыл бұрын
another fun way to get phi on excel is start with any positive number and then (x^-1)+1
@underagedlolkid2kelo
@underagedlolkid2kelo 10 жыл бұрын
hi what school does mr woo teach?
@priyanshukushwaha318
@priyanshukushwaha318 3 жыл бұрын
...
Tangent & Radius are Perpendicular (Proof by Contradiction)
12:43
The Golden Ratio in the Fibonacci Sequence
11:56
Eddie Woo
Рет қаралды 11 М.
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН
Jaidarman TOP / Жоғары лига-2023 / Жекпе-жек 1-ТУР / 1-топ
1:30:54
Encoding the Fibonacci Sequence Into Music
2:40
aSongScout
Рет қаралды 7 МЛН
The Golden Ratio (why it is so irrational) - Numberphile
15:13
Numberphile
Рет қаралды 3,7 МЛН
The Silver Ratio - Numberphile
16:21
Numberphile
Рет қаралды 917 М.
Calculating the Golden Ratio Geometrically
12:29
Eddie Woo
Рет қаралды 30 М.
Lucas Numbers and Root 5 - Numberphile
8:28
Numberphile2
Рет қаралды 161 М.
Fibonacci Mystery - Numberphile
9:48
Numberphile
Рет қаралды 2,6 МЛН
Lucas Numbers - Numberphile
5:22
Numberphile
Рет қаралды 651 М.
Beyond the Golden Ratio | Infinite Series
14:47
PBS Infinite Series
Рет қаралды 187 М.
What You Don't Know About Pascal's Triangle
7:02
Tipping Point Math
Рет қаралды 109 М.
Golden Ratio BURN (Internet Beef) - Numberphile
11:23
Numberphile
Рет қаралды 607 М.
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН