I was struggling with a similar problem, this video helped me a lot. Thank you.
@zelda123466 жыл бұрын
LCT is just a more formal version of the Squeeze Theorem, no? I was just thinking along the lines of: For all x in (0,1], sin x < x. since each term of 1/n^2 is an element of (0,1], then sin(1/n^2)
@zelda123466 жыл бұрын
@VeryEvilPettingZoo No, I just confused the Squeeze Theorem with direct comparison because I always remember the direction of implication in direct comparison by thinking about 'squeezing' a convergent/divergent series term for term between it and the constant function above/below it.
@acrazypunkrocker6 жыл бұрын
It is also well known that |sin(x)|
@regulus20336 жыл бұрын
At 5:40 you could just use limit (sin(a)/a), while a->0 instead of using Lopital's rule :-)
@Aviationlover-belugaxl5 жыл бұрын
I have come up with a similar test for divergence for definite integrals with a singularity at some value. You take the limit as some variable, a, goes to 0 of the area between n and n+a where f(n+a) diverges. That area is like a thin, tall rectangle so its the limit of a*f(n+a). If its zero, it may or may not converge, otherwise it diverges
@seanfraser31256 жыл бұрын
“Which do you like better?” Both are very useful for different situations. So I don’t have a preference.
@SmileyMPV6 жыл бұрын
"Very useful" xDxDxD
@willyou21996 жыл бұрын
cos(x) = 1 - x^2 ... immediately obviously divergent. (cos(1/n^2)-1) definitely converges tho, same with sin(1/n^2). Because (cos(x)-1) and sin(x) has form x^k only, (1/n^2)^k only makes each term smaller.
@zsigmondtelek16126 жыл бұрын
For the first sum one one could say that on the open interval (0;pi/2) 0
@Gathezito6 жыл бұрын
My test about series is today :p a video like this is refreshing
@Nick-hc2cs6 жыл бұрын
hey professor, i recently calculated the derivative of arctanh(sin(x)) and i realized it was sec(x). Does this mean that arctanh(sinx) is the same as ln(secx+tanx)? I plugged it into a graphing calculator and they were the same, except that arctanh(sinx) has extra "lines". Why does this happen?
@blackpenredpen6 жыл бұрын
Yes, kzbin.info/www/bejne/iqHPZ6N5rKmqgas
@Nick-hc2cs6 жыл бұрын
very cool!
@EduardoHerrera-fr6bd6 жыл бұрын
Yo, arctan(x)=ln(x+sqrt(1+x^2). (It's the first thing came out in my head) Sorry, blackpenredpen, I haven't seen that video. Yet.
@EduardoHerrera-fr6bd6 жыл бұрын
Damn, I got confused.
@Kicsa4 жыл бұрын
Couldn't have made it any easier, thank you professor!
@rawfries45186 жыл бұрын
Have you tried using double sided markers to use up to four colors?
@neilgerace3556 жыл бұрын
8:29 writes something while saying something else ... That's clever, I've never been able to do that :)
@blackpenredpen6 жыл бұрын
: )
@TengkuAlam Жыл бұрын
i think it would be that little bit easier if we just let 1/n^2 to be u , as n goes to infinity , u goes to 0 and by the limit sin(0)/0 =1
@specialrel61846 жыл бұрын
pls do a video on what it converges to
@danielnieto77146 жыл бұрын
Your videos are amazing. Congrats from spain :)
@hdckighfkvhvgmk6 жыл бұрын
But what is the actual sum if it does converge?
@MrAleguerreiro6 жыл бұрын
1.48352 according to wolfram alpha
@eduardomamede65486 жыл бұрын
Chen lu!
@blackpenredpen6 жыл бұрын
Of course!
@helloworld55226 жыл бұрын
When
@laylanandao96734 жыл бұрын
I'm kinda confused with Chen Lu? Is it Chain Rule? I'm sorry :((
@kikialeaki18504 жыл бұрын
Laylan Dulosa Andao it is chain rule, he was mocking himself.
@alicwz55156 жыл бұрын
5:27 Just do x=1/n^2 Then you get: lim(x->0) sinx/x = cosx = cos(1/n^2)
@asup7596 жыл бұрын
don't think that'll always work. pretty sure he only changed n to x since we are more used to differentiating wrt x, and you can't set it equal.
@0120-c2k6 жыл бұрын
Why? lim a -> 0 sin(a)/a = 1. (a=n^-2) That's much quicker, and there is no need for LH.
@GusPintarKalianGoblok6 жыл бұрын
Pardon me Professor, may i ask a question ? Which is : One the left side equation, when you subtitute 1/(n^2) = x , x should be approaching to 0 while n^2 is going to infinity. I think you should write that way. That's all professor. But your whole answer completely right. Correct me if i am wrong. Hope you succes Professor ☺☺☺👍👍👍Thank You
@blackpenredpen6 жыл бұрын
a f I put 1/x^2 I just change x with n. Because d/dn doesn't make much sense since n is meant to be whole number.
@GusPintarKalianGoblok6 жыл бұрын
@@blackpenredpen oohh i see. Thanks for explanation Professor.
@PackSciences6 жыл бұрын
Could also have presented sum from n=1 to infinity of tan(1/n^2) since it's on the same kind of exercises. It also converges.
@blackpenredpen6 жыл бұрын
Yes. I am saving that for my exam problems. : )
@PackSciences6 жыл бұрын
@@blackpenredpen Oops, sorry for spoiling your exam problems
@hokkien_kia6 жыл бұрын
Cool. What I thought was that for x≥1, sin(1/x²) is strictly decreasing and also bounded as such: 0
@zafnas52222 жыл бұрын
Unfortunately its not so easy, all you have proved is that the sequence sin(1/x^2) converges but we cannot draw a conclusion about the sum. As a counterexample to your logic, we can say the for x≥1, 1/x is strictly decreasing and also bounded below 1/x>0. However, we know that the sum of 1/x from 1 to inf actually diverges.
@lostboy5795 жыл бұрын
Best math videos on youtube for calc bc no questions 👍🏽
@lagrangiankid3786 жыл бұрын
One year ago you solved the integral of sqrt(tan(x)). Could you solve the integral of tan(sqrt(x))????
@icespirit6 жыл бұрын
What if I had infinity product for cos 1/n²?
@chessi966 жыл бұрын
where can I find the microphone you are using? May you do some video about the Lebesgue-integral or measure theorie as well?
@joaquinbrignoni57693 жыл бұрын
Muy bueno! greetings from Uruguay
@ironmc79726 жыл бұрын
I watch this video before I go to school.
@2neutrino6 жыл бұрын
Okay
@pdy96146 жыл бұрын
Why does changing it to the x-world matter? isn't that just a personal preference? You can treat "n" as the independent variable and do d/dn instead of d/dx. Right?
@adityaagarwal39853 жыл бұрын
Why cannot we draw any conclusion if lim n-> infinity sin(1/n^2) is 0?
@avshisharabani1240 Жыл бұрын
The LCT test is for positive series, how do you know that sin(1/n^2) is positive to every natural number?
@waynechen891211 ай бұрын
assuming n is positive and greater than one. the value 1/n^2 will always be positive and less than 1. sine of a number positive and less than 1 is always positive.
@pilotomeuepiculiares30176 жыл бұрын
Doens't both series have the same value? I mean, aren't they the same thing but backward? I tried to integrate and it seems like they have the same value
@a1irice4 жыл бұрын
Can't you just say that as n approaches infinity lim(sin(1/n^2)) ~ lim(1/n^2) or does that only work if both the numerator and the denominator are infinitesimals?
@icezhang61696 жыл бұрын
Your video is Good, I like your video!!
@SmileyMPV6 жыл бұрын
The first is between 1 and pi^2/6 and the second diverges :p
@SmileyMPV6 жыл бұрын
Just use sin(x)0 :)
@codahighland6 жыл бұрын
@@SmileyMPV That's how I did it, too.
@sethwest68115 жыл бұрын
Im gonna keep it a hunnid i fw the LCT more than the LFD. chen lu!
@rodrigoaceves90206 жыл бұрын
did you just say Chen Lu
@blackpenredpen6 жыл бұрын
I certainly did!
@gilber786 жыл бұрын
Now that you’ve shown Σsin(n^-2) is convergent, care to do a video on evaluating it?
@_DD_156 жыл бұрын
How about using Taylor expansion?it's the same
@5000jaap6 жыл бұрын
i was watching a video and i got curious, there is any irrationals numbers that sum equals an rational number ?
@Reliquancy6 жыл бұрын
pi and (1-pi), but one of a+b or a-b will be irrational if a and b both are might be more what youre thinking of
@theoleblanc97616 жыл бұрын
Use l Hospital rule for calculate the limite that defined sin'(0).... Strange
@cristianvique43805 жыл бұрын
1/(π^n)-(n^π) converge????
@backyard2824 жыл бұрын
5:20 Can't we evaluate this limit more simply by letting t = 1/n^2. Now t goes to zero as n goes to infinity, so equivalently we have the limit as t goes to zero of sin(t) / t = 1
@SeriousApache6 жыл бұрын
1≠ ☺
@bheemeshbommireddy48076 жыл бұрын
How do I take the limit of sin(1/x) as x approaches 0?
@thatcallout82236 жыл бұрын
This limit doesnt exist. If you put x=0 in the sin(1/x) you will have sin(1/0+) which is sin(+inf) and this have no solution cause the sine function is always between -1 and +1
@The_Mitchell6 жыл бұрын
But if cos(x^-2) is < x^-2 for all x greater than ≈ 0.739085 and x^-2 converges from 1 to inf shouldnt cos(x^-2) do the same? Edit: nvm
@stephenbeck72226 жыл бұрын
Your inequality is flipped. cos(x^-2) is greater than x^-2 for all x > ~1.25.
@The_Mitchell6 жыл бұрын
@@stephenbeck7222 thanks for some reason i was thinking of cosx2 and x2 lol
@shreyadixit9999 Жыл бұрын
Hello sir your voice is very cute and teach very good
@tgx35293 жыл бұрын
sin(x)
@Patapom36 жыл бұрын
Amazing!
@patrickpayao6 жыл бұрын
those happy and sad faces ❤
@VSS031 Жыл бұрын
Not Chen Lu😂😂😂
@i_am_anxious026 жыл бұрын
1:25 well duh
@user-xd2qk7yp9k6 жыл бұрын
I prefer BOTH!!!
@leonardschreiter68716 жыл бұрын
8:40 midlife crises
@santiagonaranjogallego45924 жыл бұрын
I don´t even understand you tshirt :,v
@EduardoHerrera-fr6bd6 жыл бұрын
Why is 7 afraid of 8? Because 7, 8, 9. Guy, I'm suppoused to be doing my homework. I saw this eating a mango. Have you eat it?