Thank you my friend, maybe my professor should be watching this.
@md.arsalasif752217 күн бұрын
This solved almost all of my doubts. Thank you!
@Meowmix80886 жыл бұрын
University of Chicago student here. This is super helpful. Thank you
@zoesoohyunlee72093 жыл бұрын
Thank you so much for the video! Saved my life for this term XD
@martinbrolarsen65807 жыл бұрын
This just made it all clear. Thanks a lot, sir!
@pawaredpiyajitmetta21726 ай бұрын
Thank a lot professor, it is so clear to me.
@carloottomano42437 жыл бұрын
This was fantastic and extremely clear. Thank you very much!
@scarlettliu8853 жыл бұрын
Thank you very much!!! This Vedic helps me a lot.
@TheBboy07203 жыл бұрын
Excellent and extremely clear
@forwoz7 жыл бұрын
Really awesome. Thx you for your explanation.
@622948383 жыл бұрын
This is incredibly prefect!
@mohammadrezamahmoudi85645 жыл бұрын
Thank you very much for your amazing and helpful tutorial!
@adrianschroder48474 жыл бұрын
Much appreciated!! Great breakdown
@osvaldoquintellajunior98582 жыл бұрын
Fantastic explanation! Thanks a lot!
@fatimazaidi70685 жыл бұрын
This is perfect. Thank you!
@niazghumro23503 ай бұрын
Very informative video but screen is little bit dim. Please refer the book which you are following in this course. Thanks in anticipation prof.
@АлександраТеплоухова5 жыл бұрын
Спасибо большое! Очень понятно и просто! Thank you! So clear and easy!
@wondwesenwubugetahun34156 жыл бұрын
It is brief and interesting. Thanks!
@villageandanimals69864 жыл бұрын
Thank you very much.
@ablaamegadze99643 жыл бұрын
Thanks very much my teacher .
@kamrulhassan71576 жыл бұрын
Wonderful lecture. Thanks a lot.
@zzambezi19592 ай бұрын
If the function to be maximized is an infinite series, I think it is needed to suppose that beta
@simonandradefonfach23176 жыл бұрын
grande juliprofe gringo
@rodolfosaturninoperezrodri74734 жыл бұрын
Great Video!! Why do we have a beta in front of L1(k) ? Isn`t that part of the equation already discounted?
@j.brightlee33144 жыл бұрын
can someone tell me what he said at 8:30, "and it drops xxxx, what it does current stuff does not have xxxx ~ ". I have watched it over and over again, but still yet figured out what the word is... thx. My English is too bad...
@aesahettr3 жыл бұрын
indices
@MrMytubevidmaker5 жыл бұрын
10:29 How do you obtain u' if you're deriving with respect to k'? You should be left with -u.
@constantinburgi39955 жыл бұрын
I use the chain rule. If you take the derivative of g(f(x)) with respect to x you will get g'(f(x))f'(x). Or here: the derivative of u(x-y) with respect to y is -u'(x-y). As an intermediary step, you can also define f(x)=v, then the derivative of g(f(x)) is equal to the derivative of g(v) with respect to v times the derivative of f(x) with respect to x. Once you took the derivative, you replace v with f(x) again to get the above result.
@chardduc4 жыл бұрын
goshh...much better than my professor
@francoisallouin18657 жыл бұрын
GREAAAAAAAT !!! Bravo.
@mleodej6 жыл бұрын
Very helpful, thanks!
@user-vd8pc1vh6j4 жыл бұрын
why is r constant? shouldn't it be function of t?
@ablaamegadze99643 жыл бұрын
Can you help me for a problem solving a exemple ?
@johnnymonteiro55773 жыл бұрын
Thank you!!
@gunnarulfars7 жыл бұрын
Hello, Im wondering how to euler and the policy/decision rules will change if interest are a function of time? Best regards.
@constantinburgi39957 жыл бұрын
As long as the path of the interest rate r is deterministic, there is little change. ct+1 is the optimal response to all future interest rates and thus ct is a function of the optimal consumption tomorrow ct+1 and the current interest rate rt.
@lannister18778 жыл бұрын
Good! very useful!
@zhifengwang54557 жыл бұрын
thank you very much
@pedrolopes28116 жыл бұрын
excellent
@francoisallouin18657 жыл бұрын
At 12:09 you say " that's gone". This is false my dear . You can't apply the first order cond. directly to a max operator. You need to use the envelope theorem again which leeds to a cercle of infinite derivations ....your method in not correct.
@constantinburgi39957 жыл бұрын
You are right that I do not go into the details of explaining the Benveniste - Scheinkman envelope theorem (and its assumption). Once applying it though (after verifying the assumptions), it is easily shown that the term disappears.
@francoisallouin18657 жыл бұрын
Thank you very much for sharing this knowledge . Once again you prove you are awesome !! with respect.
@constantinburgi39957 жыл бұрын
No worries, I should have pointed it out in the video! As a side note, if you want to derive the envelope condition, you need to take the derivative of V(k'') with respect to k''' and multiply it with the derivative of k''' with respect to k'. Given that the first derivative is 0 based on the first order condition, you immediately get the result you wanted.
@KirilStanoev6 жыл бұрын
Your t and + look the same and it is confusing!
@BilBumm4 жыл бұрын
Haha I tell you I have not seen any macro prof whose t doesnt look like a + ;D