Understanding Logarithms as Time vs. Growth (1 of 2: Introducing the Metaphor)

  Рет қаралды 57,287

Eddie Woo

Eddie Woo

Күн бұрын

Пікірлер: 16
@tBar9223
@tBar9223 Жыл бұрын
Very good teacher. I avoided maths entirely at school (and in subsequent life). However, now I’m looking at a career change into finance and am having to teach myself maths from (almost) scratch. It’s actually pretty interesting!
@rafaelmikoskirosa7510
@rafaelmikoskirosa7510 Жыл бұрын
"How _log_ does it take?" Thank you Mr. Woo. You saved my life.
@James_Haskin
@James_Haskin 2 жыл бұрын
6:02 "If I'm doubling, and I do it for 5 time periods. This is how big I'll be." 6:13 "If I'm doubling, and I want to end up 32 times bigger than I started, how long should I do that?" I think confusion comes from thinking the set starts at 2. This might be why the next question was about the rate. When it comes to conceptualization, I've been describing this as "a kind of fence post problem" where the discrete points of measure are the post (styles) and the operations are the rails that connect them and span the time periods. Fence |===|===|===|===|===| Time | 00 | 01 | 02 | 03 | 04 | 05 | Rate x2 x2 x2 x2 x2 Size | 01 | 02 | 04 | 08 | 16 | 32 |
@TheGenerationGapPodcast
@TheGenerationGapPodcast 2 жыл бұрын
In Australia, a technical high school
@ddderder
@ddderder Жыл бұрын
isn't the question of the student at the end answerable? I mean the answer to "at what rate" would be the n-th root, wouldn't it?
@lorenzoluisalbano3695
@lorenzoluisalbano3695 Жыл бұрын
What is the rate at which it grew if its present size is S (32) and it has been growing for t (5) periods ? r = S^(-t) or t √ S, t-root of S, ( =5√32 = 2). Naturally, you need to know all the other variables (S and t) first.
@mdmonirhosen9163
@mdmonirhosen9163 2 жыл бұрын
From Bangladesh 🇧🇩
@thatomofolo452
@thatomofolo452 19 күн бұрын
yessssss
@myname5713
@myname5713 2 жыл бұрын
excellent!
@davidwilkie9551
@davidwilkie9551 Жыл бұрын
"You may not understand the concept really well".. If you realise, (in the Singularity =sync-duration Eternity-now Interval Universal Flash Conception) that you ARE the real-time realization of log-antilog Conformal Field Condensation periodicity Condensation that is naturally occurring probability of AM-FM alignment in pure-math relative-timing motion ratio-rates Perspective, because i-reflection containment is Absolute Zero-infinity axial-tangential orthogonality containment.., you are a participant in conscious awareness, ie "Awake". Learning by doing, developing Intuition is re-evolution circularity quantization cause-effect @.dt instantaneously shaping e-Pi-i sync-duration probabilistic log-antilog positioning. This "takes time" to learn in useful compositions of 0-1-2-ness GD&P parallel coexistence, "Trigonometric=2D", tangency spacing relative time-timing sequences. Instantaneously.
@kanishkayadav1736
@kanishkayadav1736 Жыл бұрын
now explain this in understandable language
@engaengu9522
@engaengu9522 9 жыл бұрын
Wow what school is this place?
@samk6042
@samk6042 5 жыл бұрын
Cherrybrook high
@wlk1402
@wlk1402 Жыл бұрын
💞💞✌️
@cdmcfall
@cdmcfall 2 жыл бұрын
So I couldn't hear the question about rate, but couldn't we solve for rate if we know S and t by using either of the following? r = S^(1/t) r = ᵗ√S I understand that when we get into nth roots, we can have several different real, imaginary or complex answers, but is that not a valid form of the same equation?
@cdmcfall
@cdmcfall 2 жыл бұрын
Never mind, I just watched part 2. Thanks.
Introduction to Logarithms (1 of 2: Definition)
7:53
Eddie Woo
Рет қаралды 1,4 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 75 МЛН
小路飞还不知道他把路飞给擦没有了 #路飞#海贼王
00:32
路飞与唐舞桐
Рет қаралды 79 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 31 МЛН
Solving a 'Harvard' University entrance exam
11:31
MindYourDecisions
Рет қаралды 283 М.
Dividing by zero?
9:09
Eddie Woo
Рет қаралды 8 МЛН
Is e^x=ln(x) solvable?
6:32
blackpenredpen
Рет қаралды 861 М.
Why 7 is Weird - Numberphile
12:03
Numberphile
Рет қаралды 1,9 МЛН
Introduction to Calculus (1 of 2: Seeing the big picture)
12:11
Eddie Woo
Рет қаралды 2,8 МЛН
What is 0 to the power of 0?
14:22
Eddie Woo
Рет қаралды 10 МЛН
Logarithm Laws (1 of 3: Adding logarithms)
9:28
Eddie Woo
Рет қаралды 353 М.
Logarithms explained Bob Ross style
8:57
Tibees
Рет қаралды 3,6 МЛН
Why π^π^π^π could be an integer (for all we know!).
15:21
Stand-up Maths
Рет қаралды 3,5 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 75 МЛН