log. Only fake fans use base 10 logarithm (and by fake fans I mean most scientists).
@incription5 жыл бұрын
log = base 10 log x = base x ln = base e (maths) log e = base e (mechanics)
@alexdemoura99725 жыл бұрын
I like Ln for base-e, and Log for base-10. Some math acronyms are not the same as English worldwide, and sometimes they can be confused.
@imanolmanzanares50005 жыл бұрын
ln for sure
@ezraguerrero28795 жыл бұрын
ln
@SpruceReduce88545 жыл бұрын
I think you just made me believe in the power of imaginary numbers
@blackpenredpen5 жыл бұрын
I am glad to hear :)))
@rulekop5 жыл бұрын
Imaginary numbers are our real imaginary friends :)
@lelouch17225 жыл бұрын
There are a lot of series or integrals that are easily calculable thanks to complexx ;) (sum of cos(kx), integral of cos(ax)exp(bx) ... )
@jjeherrera5 жыл бұрын
It's more like that power of series expansion. Indeed, complex analysis is paramount.
@amiramnoamdoron5 жыл бұрын
lol for true..
@booleancoercion7855 жыл бұрын
Hey! I saw the thumbnail of the video and decided to try it myself, and it came out quite differently so I think it's worth sharing. Consider the function f(x)=x on the interval [-π,π], continued periodically over R. We'll compute its Fourier coefficients: A(n) = 0 for all n, because f is odd. B(n) = 1/π * int(-π,π) x*sin(nx)dx = (integration by parts, u=x and dv=sin(nx)) = 1/π(-x*cos(nx)/n{-π,π} - int(-π,π) -cos(nx)/n dx = ... (Boring computation, just cancel out a lot of things) = 2*(-1)ⁿ⁺¹/n. Therefore, because f is continuous on (-π,π) we get: f(x) = x = 2*sum(n=1,∞) (-1)ⁿ⁺¹/n * sin(nx) For every x in (-π,π). Divide by 2: x/2 = sum(n=1,∞) (-1)ⁿ⁺¹/n * sin(nx) For every x in (-π,π). Now, substitute y=x+π and we get: (y-π)/2 = sum(n=1,∞) (-1)ⁿ⁺¹/n * sin(n(y-π)) For every y in (0,2π). Multiply both sides by -1: (π-y)/2 = sum(n=1,∞) (-1)ⁿ/n * sin(n(y-π)) For every y in (0,2π). Lastly, recall the angle addition formula for sin: sin(a+b) = sin(a)cos(b) + sin(b)cos(a). Substituting a=ny and b=-nπ we get: sin(n(y-π)) = sin(ny)cos(-nπ) + sin(-nπ)cos(ny) = sin(ny)*(-1)ⁿ + 0*cos(ny) = (-1)ⁿ*sin(ny) Substituting this back in our sum, the two instances of (-1)ⁿ cancel out and we're left with: (π-y)/2 = sum(n=1,∞) sin(ny)/n For every y in (0,2π). 1 is in (0,2π) so we can substitute y=1 and finally (π-1)/2 = sum(n=1,∞) sin(n)/n QED.
@blackpenredpen5 жыл бұрын
WOW! THIS IS AMAZING!!! I DIDN'T THINK OF THAT! THANK YOU!!! Can I make a video of your solution and I will credit you in the video?
@booleancoercion7855 жыл бұрын
@@blackpenredpen of course!! I'd be honored!
@regulus20333 жыл бұрын
Amazing proof, thank you!!! By the way, I have a question about the considered series: can we prove its convergence without calculating sum (and without going to complex plane)? Integral test doesn't work as function sin(x)/x isn't decreasing; comparison test also doesn't help as well.
@rodrigoduarte48232 жыл бұрын
@@regulus2033 Hey, you can see that sum sin(n)/n converges by the Dirichlet test, 1/n decreases to zero and |sum_{n=1}^Nsin(n)| is bounded independently of N.
@cadereinberger33155 жыл бұрын
at 3:45 do you mean z can't be 1? The alternating harmonic series for z=-1 converges to the value given by the formula, while z=1 gives a divergent value
@blackpenredpen5 жыл бұрын
Yes, I messed up. I forgot that I was using -Log(1-z) instead of Log(1+z). And thanks for pointing out!
@ffggddss5 жыл бұрын
Yeah, I noticed that, too. But I knew what he meant, and in any case, it doesn't affect his result. Fred
@blackpenredpen5 жыл бұрын
ffggddss yea. I think I have used the version ln(1+x) too often lol
@ffggddss5 жыл бұрын
@@blackpenredpen OK, well then be more careful to mix them up, so you don't get stuck on one of them to the exclusion of the other ;-) . . . . NAAAAH! Fred
@blackpenredpen5 жыл бұрын
ffggddss yea. Will do!!
@АбдаллахМуслим5 жыл бұрын
I absolutely had had no idea how to solve this one until you gave the formula of the sinx and all of that suddenly became so obvious... anyway, that was great
@blackpenredpen5 жыл бұрын
Don't we just love the complex world?! : )
@ezraguerrero28795 жыл бұрын
So cool! Love your excitement as always!!
@blackpenredpen5 жыл бұрын
: ))))) Thank you!
@fNktn5 жыл бұрын
One of my friends works at our state library and for my birthday this year he got me a series of math exercise books from 1917. One of the problems is the following integral: integrate (tan(x)*log(cot(x))) from 0 to pi/4; This turned out to be way harder than I thought and i'd really like to see you solve it :D
@stevemonkey66665 жыл бұрын
"let me just do the math" - amen!
@blackpenredpen5 жыл бұрын
Glad to hear! : )
@Debg915 жыл бұрын
When you move to the complex world, but you know the result must end up real: 'All's well that ends well'
@UniMaestro5 жыл бұрын
school dudes don't understand why 'sin n' is not equal to 'sin²'
@mahdipourahmad39955 жыл бұрын
You went to homeschool, pavel?
@UniMaestro5 жыл бұрын
@@mahdipourahmad3995 , nope lol
@alexpotts65204 жыл бұрын
8:01 "I am still on the bottom, but this is enjoyable so I don't mind." There's no way that wasn't deliberate...
@yaleng45975 жыл бұрын
3:16 Let me just do the math.
@blackpenredpen5 жыл бұрын
definitely!
@gian2kk5 жыл бұрын
Intresting, but can you find all the functions by which int(-inf;+inf) equals sum(-inf;+inf)?
@husnainafsar87085 жыл бұрын
Was thinking the same thing before he even unveiled the final bonus. Tough question
@brandonklein15 жыл бұрын
I have absolutely no reason for guessing this, but maybe such functions have to have recursive and infinite derivatives.
@u.v.s.55835 жыл бұрын
@@brandonklein1 All piecewise constant functions of the form f([x]) where [x] is the floor function will do. So no need for differentiability.
@blackpenredpen5 жыл бұрын
That I am not sure. Oh, I know f(x)=0 works well : )
@brandonklein15 жыл бұрын
@@u.v.s.5583 Great point!
@mohammedal-haddad26525 жыл бұрын
I always wondered about that series and never thought the proof is that simple. Thank you very much.
@CDChester5 жыл бұрын
I'd choose ln. We are on the same wavelength as of late!
@blackpenredpen5 жыл бұрын
lol, I actually like "log" the most
@justabunga15 жыл бұрын
blackpenredpen would it confuse people to tell which ones they use?
@camilincamilero5 жыл бұрын
The classic discrete unnormalized sinc function. Very useful in signal analysis.
@u.v.s.55835 жыл бұрын
Sinc!!! The Cardinal Sin function. Love the name. It also appears in spectral numerical methods.
@camilincamilero5 жыл бұрын
@@u.v.s.5583 So THAT'S what the c stands for. Cardinal. I just call it sinc (pronounced as sink).
@incription5 жыл бұрын
My brain says cancel the n
@raffaeleoliva40145 жыл бұрын
My mind is telling me no But my body, my body is telling me YEAH
@mrbobtehbuildah5 жыл бұрын
thats a sin badumtss
@dexter23925 жыл бұрын
sinn/n cancels the n sin
@alexdemoura99725 жыл бұрын
If we may go further, let's also cancel 'n' from 'sin' with 'n' in 'n=1' under Σ (sigma) and we could obtain 'si'. Due to impossibility of 1 to be equal to an empty set, '=1' will vanish. Now, using a translating function, we can transform Σ (sigma) into 'S', and cancel with 's' in 'si', it comes to an 'i'. Now we have '∞ i' only where i = √-1. Commutative, we get it solved as i×∞ . Please advise.
@mrbobtehbuildah5 жыл бұрын
@@alexdemoura9972 Congrats! Here's your hardhat and unpaid internship
@kafianan65865 жыл бұрын
As usual...---> A W E S O M E ♥️♥️♥️
@SlipperyTeeth5 жыл бұрын
It's more amazing to me that you can split the original sum into 2 separate sums. In a way, you are changing the order of operation, but it doesn't end up mattering because of the specific way you change it.
@hahahasan5 жыл бұрын
I can follow the maths but I really cannot fathom how the two are the same. Taking the integral to be approximated by the Riemann sum with vanishingly small error, does this result not imply that only rectangles near integer values on the number line contribute to the integral? Alternatively, the contribution of non integer rectangles must cancel precisely but just looking at a graph of sin(x)/x suggests this can't be the case. I must be missing something fundamental here. Any insight is greatly appreciated :)
@doaby39795 жыл бұрын
hahahasan I was thinking something similar. I think that due to the cyclical nature of the function, the integers at which the rectangles over approximate the area of the function have to precisely cancel out with the rectangles that under approximate the area. Seems strange to me that this would be the case too, but the rectangles formed by the height of the function at higher/lower values are mostly negligible, so I suppose this contributes to it as well
@husnainafsar87085 жыл бұрын
I was thinking the same but what helped me understand it better was to think of the integral as the area, and the summation as heights of lines corresponding to x for the real valued function sin(x)/x. Areas and lengths can't really be compared. Maybe also, think of a simple rectangle. 6 by 4 maybe. The area is 24 yet I can choose lots of line segments (vertical or horizontal) whose sum could be a lot higher, or a lot less.
@MathZoneKH5 жыл бұрын
great video Mrr. prof.!
@hassanalihusseini17175 жыл бұрын
I like that starting with a sum of real numbers, going through complex world and ending up with a real answer! Reminds me of Umar Khayyam solving third degree polynomial equations by going through complex without knowing or defining complex numbers at all!
@jayapandey25415 жыл бұрын
Complex definition of sine of theta. Brings back memories of WhiteChalkRedChalk and the red and black stripes tee.
@richardfredlund38025 жыл бұрын
if you integrate the function in the summation (where sin(0)/0 is set =1) do you get the same value. If so that function has the property that it's summation is the same as it's integral. which leads to the question what other functions have this property.
@semiclean5 жыл бұрын
You made my day ! Mind blowing improper integral infinite series.
@blackpenredpen5 жыл бұрын
Loïc Magnien thank you!! I am glad to hear!!
@joebrinson50405 жыл бұрын
Amazing. Who would ever guess the sum is pi
@blackpenredpen5 жыл бұрын
Yea, exactly! It seems like if we just randomly guess "pi" as the answers to hard problems, then we might have a good chance!
@pengiiin5 жыл бұрын
Thanks man! This has been hunting my dreams! But why are we allowed to break up the infinite sum into two parts at 4:29?
@Kartik-yi5ki5 жыл бұрын
Since neither diverge
@IshaaqNewton5 жыл бұрын
Can you find the integration of log {-x} for me? [ Note: ln x= log (x)] It is carrying 1/lnx!!
@willnewman97835 жыл бұрын
It should be noted that this works because e^i and e^-i both have absolute value 1, so the series converge.
@mike4ty45 жыл бұрын
10:47 (647 s) - It's called the sinc function. So you should write int_{-oo...oo} sinc(x) dx = sum_{n=-oo...oo} sinc(n).
@abdellah.1.6925 жыл бұрын
great classic sum
@blackpenredpen5 жыл бұрын
Yup!!!! Btw, I love your username.
@baxter0215 жыл бұрын
I'm impressed by how you write on the board
@blackpenredpen5 жыл бұрын
Thank you! : )
@joaquingarridozafra15875 жыл бұрын
Thanks man! I was looking for exactly that!
@treyforest24665 жыл бұрын
You can think of an integral as basically the continuous extension of the sum from discrete math, in other words, in this infinite sum you sum over all integers but in the integral you “sum” over all real numbers. If the integral and the sum evaluate to the same thing, that would imply that only the integer values contribute to the final result, and all the non-integer real values of sin(x)/x “sum” to 0. Right?
@pbj41843 жыл бұрын
Is it somehow possible to show that the difference between the integral and sum is 0 without solving for both of them?
@braedenlarson91225 жыл бұрын
Why does that first note hold true? Where did it come from?
@aidalf1912 Жыл бұрын
did you find the answer by any chance?
@hoffmathsmathematics80275 жыл бұрын
First time here!!! How didn't I find your videos before? ... Thanks for the Maths!!!! In my Mathematics Faculty in Brazil we did not learn how to deal with that sum the way you did. I remember it was much more difficult to understand. Your explanation was ♾ Times Better!!! Thanks from a Mathematics Teacher in Brazil!!! 🙏📚🎉🥇🏆💡📖💡
@helloitsme75535 жыл бұрын
Log(-1) is πi+2ki right? So how do you know for sure k=0 gets you the correct answer?
@dmytro_shum5 жыл бұрын
watch a video about complex logarithm in the description under the video
@blackpenredpen5 жыл бұрын
Its like doing integral of 1/(1+x^2) from 0 to 1, we get arctan(x) then plug in 1 and 0. We take arctan(1)=pi/4 instead of 5pi/4. And yea. You can see Peyam’s video on complex log and principal branch for more details.
@allanlago15 жыл бұрын
At 7:40 , why do you only consider the first solution to ln(-1) and not (2n +1)*pi*i ? I know the sum can only converge to one value but what would tip me off to it being solely pi*i?
@marcomalabarba35565 жыл бұрын
Great video! What about the serie sum from 1 to infinity of 1/(n^(1+abs(sin(n)))) ? Does it converge or diverge? 🤔🤔
@KalikiDoom5 жыл бұрын
con. from 1 to inf. => the turms get exponentially small after 1.
@kasto90605 жыл бұрын
Basically its 1/n^(z(n)) Where z(n) > 1 This condition guarantees, that it converges
@federicovolpe33895 жыл бұрын
Marco Malabarba (1+abs(sin(n))>1 for every n, since sin(n) is only 0 for integer multiples of pi and so abs(sin(n))>0. So by the p-series test the whole thing converges I think.
@marcomalabarba35565 жыл бұрын
@@federicovolpe3389 I don't know, we could use a similar argument for the serie 1/(n^(1+1/n)) (as 1/n is always bigger than zero for all the integers), but it diverges
@Cloud88Skywalker5 жыл бұрын
The complex plane has no order, so does it make any sense to define a summation "from a to b" in the complex plane?
@kiraselby37905 жыл бұрын
Isn't this a special case of Parseval's theorem?
@aidalf1912 Жыл бұрын
I'm trying to prove the note you mentioned at 2:32 but I'm stuck. can you help me?
@dexter23925 жыл бұрын
A wild integral appears!
@alejandrojimenez1085 жыл бұрын
lol I thought the bonus was going to be a tie in to clausen
@shoobadoo1235 жыл бұрын
11:28 “so good” lmao
@victorvilla89245 жыл бұрын
Man that was cool. Thank you.
@seroujghazarian63435 жыл бұрын
Did I just watch a mathematician divide by 0 and give an answer? Unacceptable!
@lesnyk2555 жыл бұрын
Dividing the power series expansion of sin(x) by x leaves 1.
@seroujghazarian63435 жыл бұрын
@@lesnyk255 to simplify in a literal fraction, you need to be sure that the divided value CANNOT be 0
@lesnyk2555 жыл бұрын
@@seroujghazarian6343 sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ... so for non-zero x, sin(x)/x = 1 - x^2/3! + x^4/5! - ... As x approaches 0, higher order terms in sin(x)/x vanish, leaving 1
@seroujghazarian63435 жыл бұрын
@@lesnyk255 approaches 0 WITHOUT being 0
@lesnyk2555 жыл бұрын
@@seroujghazarian6343 The function f(x) = 1 - x^2/3! + x^4/5! - x^6/7! + ... is neither indeterminate nor undefined at x=0, so we may evaluate it there, whence f(0) = 1.
@miruten46285 жыл бұрын
Or you could split sum(exp(in)/n) = - Log(1-exp(i)) into real and imaginary parts. You need to express 1-exp(i) = 1 - cos1 - i*sin1 in polar coordinates: 1-exp(i) = sqrt(2-2cos1)*exp(i*(1-pi)/2), which gives you: sum(sin(n)/n) = (pi-1)/2 ≈ 1.07 sum(cos(n)/n) = -1/2*log(2-2cos1) ≈ 0.042. Very different-looking results! (How do you find the angle? [0, 1, 1-exp(i)] is an isosceles triangle, where the angle at the vertex at 1 is 1rad).
@wikiproofy19015 жыл бұрын
What about cos(n) /n?
@fr3ddyxc5 жыл бұрын
I’m going to try to buy your shirt during back to school. I love it. greetings from Ecuador
@msmmath875 жыл бұрын
Great work
@thelightningwave5 жыл бұрын
Notice how he didn't explain how to get the sum of sinc(n) from the entire integers. He used symmetry, as sinc(n) is an even function, so the sum on the negative integers was also (pi-1)/2. So, if you take the sum from the integers (excluding zero), you get 2((pi-1)/2), which is pi-1. And to finish it off he added that value to the limit of the sinc function at zero, which is 1. So then he added (pi-1)+1, which then equals pi. So, that's how he got pi from using the sum.
@pukkandan5 жыл бұрын
Can we prove that it indeed converges to the primary solution and not to one of the other solns?
@KalikiDoom5 жыл бұрын
A very nice one!
@rizkial52215 жыл бұрын
Where are u come from sir?
@u.v.s.55835 жыл бұрын
The land of black and red pens!
@chritophergaafele89225 жыл бұрын
where did you learn that
@yusufat15 жыл бұрын
bprp writes "log" as "loy"
@egillandersson17805 жыл бұрын
I think I have an explanation for this equality. Since 2𝝅 (the whole circumference) is irrationnal, going step 1 infinitely along the circle scans finally all the points of the circumference, which is the definition of the integral. Right ?
@egillandersson17805 жыл бұрын
Did I write a so stupid thing ?
@krish13495 жыл бұрын
Blackpenredpen, but uses a marker!!
@blackpenredpen5 жыл бұрын
Yea
@user-og9nl5mt1b5 жыл бұрын
I don't even know what u say in all of your videos , but it still interests me , I should learn math.
@noahtaul5 жыл бұрын
BPRP at 6:05: “In this case we can just look at the branch cut from -pi to pi” Also BPRP at 7:42: log(-1)=pi*i 🤨🤔🤔🤨🤔🤨🤨🤔🤔🤨🤨🤔🤨🤔🤔🤨
@blackpenredpen5 жыл бұрын
Yea, branch cut from (-pi, pi]
@Dionisi05 жыл бұрын
You are the Jackie Chan of maths
@blackpenredpen5 жыл бұрын
I am honor to hear that!
@blackpenredpen5 жыл бұрын
I am honor to hear that!
@VibingMath5 жыл бұрын
Cool video as always! 😎
@veganotaku68703 жыл бұрын
Can you prove that the sin(x)/x integral is equal to the sin(n)/n series directly without evaluating it to pi?
@garyhuntress68715 жыл бұрын
Unexpected Payam!!!
@blackpenredpen5 жыл бұрын
Lol, he is my usual guest tho! : )
@blackpenredpen5 жыл бұрын
Lol, he is my usual guest tho! : )
@topmaths0.694 жыл бұрын
Hi, What do u think about the serie $\sum \sin(n)^n$ ? I am not even sure that sin(n)^n tends to 0. We know sin(n) can be as close as we want to 1, but never equal to 1, so the nth power can be small !
@johannesh76105 жыл бұрын
But couldn't I choose ln(-1) to be - πi? Then the argument wouldn't be valid anymore. The branch cut for the principal branch of the logarithm doesn't matter to the series around 1, so it could have been chosen at φ=0.999π or something. Just assuming one value *at* the branch cut seems very dangerously lax
@Nikkikkikkiz5 жыл бұрын
i would use sum of harmonics is pi-pix/2 from 0 to pi
@jabunapg13874 жыл бұрын
Really cool!
@rosesyverud-lindland31964 жыл бұрын
I'm a younger student so forgive me if this is a stupid question, but: the Gregory-Leibniz theory states that sigma n=1 to infinity of sin(n)/n = pi/4. Why do you need to do sigma of negative infinity to infinity of sin(n)/n to get pi?
@kutuboxbayzan59675 жыл бұрын
What is Sum 1/Prime numbers ? 1/2+1/3+1/5+1/7...=?
maybe you could follow up with an expansion of this video for the sum of 1 to infinity of sin(nx)/(pi*x) and it converging to the dirac distribution? thanks :)
@lelouch17225 жыл бұрын
Any solution without using complex logarithm (which is a pretty tricky "functiun) ?
@ShanePenick5 жыл бұрын
I've seen that function called sinc(x) online.
@blackpenredpen5 жыл бұрын
Yes. It’s a fantastic one! I plan to do more on it.
@u.v.s.55835 жыл бұрын
I think I saw it in the Boyd's book on spectral methods. C stands for Cardinal.
@freddysilva19385 жыл бұрын
Dont believe in wolframalpha ?
@omarh58775 жыл бұрын
why not just use the comparison test and compare it to 1/x and we will clearly see that it diverges by p-series without doing any of this work?
@VladimirDjokic7 ай бұрын
Really interesting
@Patapom35 жыл бұрын
Amazing!
@Supernova7995 жыл бұрын
A video on combinatorics and permutations !!! Good vodeo
@gessoalfa5 жыл бұрын
I want to buy a t-shirt. Do you send to Brazil?
@blackpenredpen5 жыл бұрын
yes! : )
@kutuboxbayzan59675 жыл бұрын
Note |z|
@johnzalion85085 жыл бұрын
blackpenredpenbluepen
@zanti41325 жыл бұрын
This result bothers me. It seems to me the answer should be zero for the following reasons: First, for any randomly selected positive integer n, the value of sin(n) will be some random value between -1 and+1. Since the sine curve itself is essentially symmetric, there is nothing to favor positive values over negative values. Therefore, the summation of sin(n) for all positive integers n should be zero. Now, would this change for the summation of sin(n)/n? I don't think so, because the summation of 1/n diverges. We can start the summation at any positive integer n, and the sum is not finite. Again, this suggests to me the positive and negative values will cancel out, leaving you with zero.
@deepmakadia74135 жыл бұрын
Sin(n)/n is not convergent so how its sum is finite?
@georget80085 жыл бұрын
That is perhaps because its sign alternates as n-.>inf
@dexter23925 жыл бұрын
Well, its integral is convergent, just look at the graph. From this you can conclude that its sum is convergent using the integral test. Because sin(x) always has the same set of values after a period 2pi, but x is not periodic, when x grows indefinitely, the denominator grows arbitrarily large compared to the sin(x) (which always stays in range [-1;1]) and so there is a limit.
@tylershepard42695 жыл бұрын
I love this approach. I was thinking more along the lines of Fourier series for a triangle wave but this works too.
@thedoublehelix56615 жыл бұрын
sinn/n cancel the n to get sin
@u.v.s.55835 жыл бұрын
There are far more pleasurable ways to get sin, my son!
@pedroafonso83845 жыл бұрын
Really nice[btw prefer ln :)]
@ab45163j5 жыл бұрын
I didn't know that the integral of a (just even?) function from -inf to inf is the sum of that function. So cool. By the way the integral from -inf to inf is 0 when the function is even. The area under the function is twice...
@lelouch17225 жыл бұрын
He never said that He is true in this case but not in general
@ab45163j5 жыл бұрын
@@lelouch1722 thanks
@u.v.s.55835 жыл бұрын
In Germany: ein = 1 ei = egg.
@georget80085 жыл бұрын
The power series you used is valid if abs(z)
@rulekop5 жыл бұрын
abs(e^i) is a real number (as every absulute value is), therefor it can be used in inequalities even though the number e^i itself can't. Let me know if you need further explanation.
@georget80085 жыл бұрын
@@rulekop the e^i is a complex number. Its size (not its absolute value) is a real number. Its absolute value is not defined since i cannot determine whether e^i>0 as the complex numbers cannot be ordered. I think that this reasoning is correct, unless i miss something. The power series requires |z|
@أبوشاهين-ت6ك5 жыл бұрын
Wanderful job 😍😍
@athanasiuscontramundum41275 жыл бұрын
So how does Log(e^i) cancel to i? Is Log ln or something?
@dexter23925 жыл бұрын
If you used ordinary ln, you would have to write "+2*pi*n, where n is an integer" to your answer, because it has infinitely many possible values.
@athanasiuscontramundum41275 жыл бұрын
Thyron Dexter but i dont see how the Log cancels because Log is base ten.
@dexter23925 жыл бұрын
@@athanasiuscontramundum4127 nope, "log" is base ten, "ln" is base e, and "Log" with a capital L is the complex version of ln (also base e). This is just a convention.
@athanasiuscontramundum41275 жыл бұрын
Thyron Dexter oh i had no idea that was a thing. Thank you.
@avalons21705 жыл бұрын
hi ..... what about Sum of abs(sin n)/n ..... thanks
@u.v.s.55835 жыл бұрын
Should diverge. + infinity.
@florisv5595 жыл бұрын
Awesome.
@jjeherrera5 жыл бұрын
It would be more appropriate to say that lim sin(x)/x ->1 as x->0., since it's the limit that makes sense, not sin(0)/0.
@farisalsharbi87312 жыл бұрын
sum((1+(1/2)+(1/3)+...(1/n))(sin(nx)/n) from n=1 to infinty Does this converge and how if you can, thanks
@YourPhysicsSimulator5 жыл бұрын
Nice :)
@owennorth5 жыл бұрын
Why the hell is this in my recommendations
@blackpenredpen5 жыл бұрын
Gregnant •_• what have you been watching?
@rahulmehrx5 жыл бұрын
can you please do a video on if y = ln(ln(ln(ln(.....ln(x)) what's dy/dx