ViLT:使用Transformer最简单的多模态模型,同时处理图像和文本,大力出奇迹!

  Рет қаралды 1,440

Ph.D. Vlog

Ph.D. Vlog

Күн бұрын

欢迎来到我的频道,在这里我会讲解机器学习、深度学习最经典或者最前沿的模型,同时我还会讲在美国如何生活,如何找工作,如何刷LeetCode,如何快速融入社会。喜欢记得订阅、点赞哦!如果你有什么想要听的,在下面留言吧!
目前的讲解清单:
线性回归 (LR)、逻辑回归 (LogR)、多项式回归 (PR)、Lasso 回归、Ridge 回归、弹性网络 (Elastic Net)、决策树 (DT)、随机森林 (RF)、梯度提升树 (GBT)、XGBoost、LightGBM、CatBoost、支持向量机 (SVM)、朴素贝叶斯 (NB)、K 最近邻 (KNN)、主成分分析 (PCA)、独立成分分析 (ICA)、线性判别分析 (LDA)、t-分布邻近嵌入 (t-SNE)、高斯混合模型 (GMM)、聚类分析 (CA)、K 均值聚类 (K-means)、DBSCAN、HDBSCAN、层次聚类 (HC)、GAN (生成对抗网络)、CGAN、DCGAN、WGAN (Wasserstein GAN)、StyleGAN、CycleGAN、VAE (变分自编码器)、GPT (生成式预训练模型)、BERT、Transformer、LSTM (长短期记忆网络)、GRU (门控循环单元)、RNN (循环神经网络)、CNN (卷积神经网络)、AlexNet、VGG、GoogLeNet、ResNet、MobileNet、EfficientNet、Inception、DeepDream、深度信念网络 (DBN)、自动编码器 (AE)、强化学习 (RL)、Q-learning、SARSA、DDPG、A3C、SAC、时序差分学习 (TD)、Actor-Critic、对抗训练 (Adversarial Training)、梯度下降 (GD)、随机梯度下降 (SGD)、批量梯度下降 (BGD)、Adam、RMSprop、AdaGrad、AdaDelta、Nadam、交叉熵损失函数 (Cross-Entropy Loss)、均方误差损失函数 (Mean Squared Error Loss)、KL 散度损失函数 (KL Divergence Loss)、Hinge 损失函数、感知器 (Perceptron)、RBF 神经网络、Hopfield 网络、Boltzmann 机、深度强化学习 (DRL)、自监督学习 (Self-supervised Learning)、迁移学习 (Transfer Learning)、泛化对抗网络 (GAN)、对抗生成网络 (GAN)、训练生成网络 (TGAN)、CycleGAN、深度学习生成模型 (DLGM)、自动编码器生成对抗网络 (AEGAN)、分布式自编码器 (DAE)、网络激活优化器 (NAO)、自编码器 (Autoencoder)、VQ-VAE、LSTM-VAE、卷积自编码器 (CAE)、GAN 自编码器 (GANAE)、U-Net、深度 Q 网络 (DQN)、双重 DQN (DDQN)、优先回放 DQN (Prioritized Experience Replay DQN)、多智能体 DQN (Multi-agent DQN)、深度确定性策略梯度 (DDPG)、感知器 (Perceptron)、稀疏自编码器 (SAE)、稀疏表示分类 (SRC)、深度置信网络 (DBN)、支持向量机 (SVM)、集成学习 (Ensemble Learning)、随机森林 (Random Forest)、极限梯度提升树 (XGBoost)、AdaBoost、梯度提升机 (Gradient Boosting Machine)、Stacking、贝叶斯优化器 (Bayesian Optimization)、贝叶斯网络 (Bayesian Network)、EM 算法 (Expectation-Maximization Algorithm)、高斯过程 (Gaussian Process)、马尔科夫链蒙特卡洛 (MCMC)、强化学习 (Reinforcement Learning)、无监督学习 (Unsupervised Learning)、半监督学习 (Semi-supervised Learning)、监督学习 (Supervised Learning)、迁移学习 (Transfer Learning)、维数约简 (Dimensionality Reduction)、特征选择 (Feature Selection)、特征提取 (Feature Extraction)、正则化 (Regularization)、标准化 (Normalization)、聚类 (Clustering)、分类 (Classification)、回归 (Regression)、降维 (Dimensionality Reduction)、特征映射 (Feature Mapping)、神经网络 (Neural Network)、神经元 (Neuron)、激活函数 (Activation Function)、损失函数 (Loss Function)、优化器 (Optimizer)、学习率 (Learning Rate)、批次大小 (Batch Size)、迭代次数 (Epoch)、超参数 (Hyperparameter)、模型评估 (Model Evaluation)、交叉验证 (Cross Validation)、混淆矩阵 (Confusion Matrix)、ROC 曲线 (ROC Curve)、AUC 值 (AUC Value)、精确度 (Precision)、召回率 (Recall)、F1 分数 (F1 Score)、模型解释 (Model Interpretability)、特征重要性 (Feature Importance)、局部解释 (Local Explanation)、全局解释 (Global Explanation)、机器学习管道 (Machine Learning Pipeline)、一键生成模型 (AutoML)、超参数优化 (Hyperparameter Tuning)、FFT、拉普拉斯变换、z变换、傅里叶变换、短时傅里叶变换 (STFT)、IIR、FIR、卡尔曼滤波、DIP算法、小波变换

Пікірлер
科研996:Swin-UNet 30天拼手速发出来的论文?
7:29
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Swin Transformer论文精读【论文精读】
1:00:22
跟李沐学AI
Рет қаралды 35 М.
AI時代,你跟上了嗎?|李宏毅|人文講堂|完整版 20231209
24:01
【生成式AI導論 2024】第1講:生成式AI是什麼?
29:29
【機器學習2021】Transformer (上)
32:48
Hung-yi Lee
Рет қаралды 227 М.
多模态论文串讲·上【论文精读】
1:12:25
跟李沐学AI
Рет қаралды 25 М.
Transformers (how LLMs work) explained visually | DL5
27:14
3Blue1Brown
Рет қаралды 4,7 МЛН
Attention in transformers, step-by-step | DL6
26:10
3Blue1Brown
Рет қаралды 2,1 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН