Visual Harmonic Series Divergence from Bernoulli!

  Рет қаралды 110,665

Mathematical Visual Proofs

Mathematical Visual Proofs

Күн бұрын

Пікірлер: 116
@ruthvikas
@ruthvikas Жыл бұрын
Nicely explained 🙂
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you 🙂
@Fire_Axus
@Fire_Axus Жыл бұрын
Liar
@ruthvikas
@ruthvikas Жыл бұрын
@@Fire_Axus bruh i study maths in college and this topic is there
@rblgalichek
@rblgalichek Жыл бұрын
🙂
@capsey_
@capsey_ Жыл бұрын
Damn that was clean
@The9thDoctor
@The9thDoctor Жыл бұрын
Nice and elegant. Love it.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Thank you! 😊
@elidoz9522
@elidoz9522 Жыл бұрын
the best proof I've ever seen of this
@MathVisualProofs
@MathVisualProofs Жыл бұрын
:) Thanks! Lots of good ones to choose from :)
@adrianv.v.4445
@adrianv.v.4445 Жыл бұрын
Had never seen this proof, beautiful. 👌
@Ninja20704
@Ninja20704 Жыл бұрын
Another way would be to say that the harmonic series is bigger than the area under 1/x from 1 to inf by drawing rectangles, similar to what you did. But since the area, which is really the integral of 1/x from 1 to inf diverges, the harmonic series must also diverge.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes. But that proof requires knowledge of integrals (and improper integrals at that ) 😀
@AlisterCountel
@AlisterCountel Жыл бұрын
I usually think of the powers of 2 trick, but this is also a neat proof!
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Similar game :)
@mohammedal-haddad2652
@mohammedal-haddad2652 Жыл бұрын
This is so clever. Thank you very much.
@diwakarprasad9562
@diwakarprasad9562 Ай бұрын
Nice analogy man...😮
@muhammadyogaa.9097
@muhammadyogaa.9097 Жыл бұрын
How exciting ! 🤯
@schrodingersalphacat1862
@schrodingersalphacat1862 Жыл бұрын
Brilliant!
@Shaeffen_
@Shaeffen_ Жыл бұрын
Proven to be an infinate sum of 1s even though it seems to be less than 2 😵‍💫
@stroo_
@stroo_ Жыл бұрын
1/2 + 1/3 + 1/4 = 13/12, add the one from the beginning, how would it be less than 2?
@asv3331
@asv3331 Жыл бұрын
​@@stroo_ at first glance it can look similar to the sum of inverse powers of two. (1+1/2+1/4+1/8+1/16...) which of course converges to two.
@deleted-something
@deleted-something 3 күн бұрын
That’s interesting, the prime case of a sum that approaches to 0 but still being infinite, otherwise 1/x would have a limited area, and ln(x) couldn’t grow on forever
@saikatkarmakar6633
@saikatkarmakar6633 Жыл бұрын
You earned a subscriber
@prakashkumar1799
@prakashkumar1799 Жыл бұрын
brilliant
@abdelkarimdebbah9512
@abdelkarimdebbah9512 Жыл бұрын
*Math Sharingan unlocked*
@themathsgeek8528
@themathsgeek8528 Жыл бұрын
Nice!
@eliasboudjella1141
@eliasboudjella1141 Жыл бұрын
The last inequalities seems to be wrong because ln(n)
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Why using ln? That’s not part of the justification.
@eliasboudjella1141
@eliasboudjella1141 Жыл бұрын
@@MathVisualProofs . I agree with the proof but i would write the last line in a different way thanks to the partial sums since it is not the same « n » on both sides of the inequality, we sum by packets on the left. It is just the manipulation of infinity which i find weird
@ThePeterDislikeShow
@ThePeterDislikeShow Жыл бұрын
I've always learned it as powers of 2.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes. Oresme’s proof that you learned is far more prevalent.
@YOUTUBE_AMERICA
@YOUTUBE_AMERICA Жыл бұрын
Love from India you are better than my teacher
@MochiClips
@MochiClips Жыл бұрын
I like the 1/2 explanation 1>=1 1/2>=1/2 1/3+1/4 >= 1/4+1/4=1/2 1/5+1/6+1/7+1/8>= 4*1/8 etc... Doubling the number of points and halving the denominator getting an unbounded sum and hence divergent 🗿 I like your argument though it's nice 😎
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes. That is the classic argument due to Oresme. But this is how Bernoulli made sense of it.
@kevinbihari
@kevinbihari Жыл бұрын
Sorry man, you lost me Why the graph? What is c? Why 1 over c squared? Hiw do you know what the y coordinate is at x=c squared if c is just a fantasy number? How does that get applied more than 1 times? I really love your style. Would you make a longer video please?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes. I was thinking that this could use a longer one so I’ll try to follow up. The value c can be anything. Then you stop at that number squared. So if you use c=26, then you stop at 26 squared. So at the end, you can keep walking along the harmonic series taking the next unused fraction as 1/c and then go to 1/c-squared. Then repeat on the next number serving as the new “c” value.
@cond.oriano5898
@cond.oriano5898 Жыл бұрын
​@@MathVisualProofs so, this means we can stop at 36, 37etc.?
@giancarlocafaro6734
@giancarlocafaro6734 Жыл бұрын
@@cond.oriano5898 ya, exactly. Using the variable c means we can say this about any number, no matter how big. Working with variables makes it easier to manipulate expressions, like when he says (c^2-c)/c^2=1-1/c. You would factor the c from the top expressions, cancel it with one of the c’s from c^2 on the bottom to make (c-1)/c and then distribute the bottom c to make c/c-1/c. That would be hard to conceptualice with numbers.
@cond.oriano5898
@cond.oriano5898 Жыл бұрын
@@giancarlocafaro6734 we can take any number as variable right? But it should be a typically higher and easier to divide/multiply with number. For our wish, we can take the variable?
@maxbow-arrow5931
@maxbow-arrow5931 Жыл бұрын
Great proof! Here's another one: We can replace every element of the harmonic series with a smaller power of two (for example, 1/3 -> 1/4, 1/5 -> 1/8 etc.). Then our sum becomes 1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+8*1/16+...+2^n*1/(2^n+1)+... which is just an sum of infinite halves. This sum is smaller than the harmonic series, so it also diverges.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Yes! This is the classic proof due to Oresme. I find that one to be the most well known so I thought I'd try this one from Bernoulli as a complement :)
@yangsong6111
@yangsong6111 20 күн бұрын
how to come up with the idea to sum till 1/c squared
@JHnat
@JHnat Жыл бұрын
You are going to eventually get to 2. 1+ 1/2… so on and so forth. It will approach if not reach 2
@MathVisualProofs
@MathVisualProofs Жыл бұрын
This series gets much larger than 2. It’s slow, but it will be larger than any number you pick.
@Hassan_MM.
@Hassan_MM. Жыл бұрын
How does c & c^2 fall on x axis & plz do explain Height of Bottom Rectangle❤
@MathVisualProofs
@MathVisualProofs Жыл бұрын
the red (bottom) rectangle has a length of c^2-c on the x-axis. The width of the rectangle is obtained by plugging in c^2 into the function giving 1/c^2. So the area of the red rectangle is the product of these two. Does this help?
@Hassan_MM.
@Hassan_MM. Жыл бұрын
@@MathVisualProofs Ya Agreed 👍🏻 but how c^2 & c falls on the same axis, whenever a Degree is added a function seems to fly randomly inshort it no longer remain Linear ❓️
@10names55
@10names55 Жыл бұрын
​@@Hassan_MM. what does it have to do with the plotting of c^2 he is just putting c^2 values for any given c and for the height its just given y=1/x
@Hassan_MM.
@Hassan_MM. Жыл бұрын
@@10names55 Don't know why I'm having Difficulty in getting that part
@wiggles7976
@wiggles7976 Жыл бұрын
@@Hassan_MM. The idea is just to start by letting c be any natural number greater than 1 (the edge case of c=1 doesn't really matter). Then, on the x-axis, we plot every number from c to c^2 inclusive. The rest of the argument follows from there. c^2 is just a natural number greater than c, so there's no trouble to plot the function for c, c+1, c+2, ..., c^2 - 2, c^2 - 1, and c^2.
@feyindecay912
@feyindecay912 Жыл бұрын
Sadly I don't understand... does this have to do with music theory?
@Fire_Axus
@Fire_Axus Жыл бұрын
💀
@wiggles7976
@wiggles7976 Жыл бұрын
It has something to do with the fact that a taut string fixed on both ends has a node at 1/1 its length, 1/2 its length, 1/3 its length, 1/4 its length, and so on, for various harmonics. It doesn't actually make much sense to add the wavelengths though; it makes more sense to add the waves themselves through superposition.
@omnipresentcatgod245
@omnipresentcatgod245 Жыл бұрын
It's partially related to music theory, however it's very niche
@feyindecay912
@feyindecay912 Жыл бұрын
@@omnipresentcatgod245 I'm more of a composer than a mathematician so I was hoping to learn something interesting about overtones or tuning or something...
@agytjax
@agytjax Ай бұрын
This proof was originally provided by Nicole Oresme in the 14th century: en.wikipedia.org/wiki/Nicole_Oresme#MathematicsThis short is a visual demo of the same
@MathVisualProofs
@MathVisualProofs Ай бұрын
This is different from Oresme’s proof. This is Bernoulli’s argument (though similar to oresme’s)
@agytjax
@agytjax Ай бұрын
@@MathVisualProofs - I thought Bernoulli's proof is based on adding the partial sums and arriving at an apparent contradiction a+1=a. Then Bernoulli argues that this is possible only when a is +infinity. Isn't it ? This video is a good visual demo. However, it borrows the concept of constructing a series of partial sums of 2^(n-1) terms of 1/(2^n). Each of the partial series equals to 1/2 and hence an infinite series of 1/2. Here instead of 1/2, you have showed it is >=1. Therefore it looks very much like a Oresme rather than a Bernoulli. Here is one of the several representations of Bernoulli's proof : kzbin.info/www/bejne/g6K5YoCbfcaMj80
@MathVisualProofs
@MathVisualProofs Ай бұрын
@@agytjax I am using this paper scipp.ucsc.edu/~haber/archivesc/physics116A10/harmapa.pdf as a reference (proof 12). I agree that this is similar to oresme’s proof but it is different because of the numbers used and the bounds used (not powers of 2 here).
@Mike-nv1wz
@Mike-nv1wz Жыл бұрын
you used the associative property to rearrange the terms, partial sums. it is valid if the series is regular ( divergent or convergent) . how do we know the armonic series is regular? i miss this point
@MathVisualProofs
@MathVisualProofs Жыл бұрын
This argument can be applied to the sequence of partial sums (where associativity is guaranteed) to show that the sequence of partial sums diverges and thus the series diverges.
@beath-y5y
@beath-y5y Жыл бұрын
But you cant devide infinite series by parts of sums if it is diverges
@單邊襪
@單邊襪 Жыл бұрын
As a person who never touched calc Im kind of confused, why cant we just pair up each component of the two series and say that all 1s are bigger than the other half / third / quarter, so the infinite sum of 1 should be bigger?
@victormagaud2967
@victormagaud2967 Жыл бұрын
can't we just use the fact that lim(sum(1/k))=integral of ln(x) between 1 and +infinity which diverge ?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
That equally seems off. It is bounded below by an appropriate integral of 1/x. Anyway this is an alternate way to prove the fact that does not rely o. Integration.
@haythemtilouch1191
@haythemtilouch1191 Жыл бұрын
I'm curious about how you make theese videos what software u use ?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I use manim for these.
@erenkayaerenk
@erenkayaerenk Жыл бұрын
Wow answer is infinity how didn't I guessed?😮
@bonkerbean6667
@bonkerbean6667 Жыл бұрын
Would 1+2+4+7+11+16+…. Be a harmonic series?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
The harmonic series is the sum of reciprocals of all positive integers as shown in this video.
@bonkerbean6667
@bonkerbean6667 Жыл бұрын
@@MathVisualProofs thank you!
@wishwellingtonsstuff
@wishwellingtonsstuff Жыл бұрын
Aaaahhhhhh!
@yiutungwong315
@yiutungwong315 Жыл бұрын
Infinity ♾️💍
@morgangraley1049
@morgangraley1049 Жыл бұрын
Would this proof still work if you used the left-point? The midpoint? Using a trapezoid instead?
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Maybe, but the lower bound might bit work out so clean. Give it a try!
@vaibhav_topg
@vaibhav_topg Жыл бұрын
can you do a visiual of ap gp series ? i will subscribe to 😉
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I have lots of series videos on the channel. Check kzbin.info/aero/PLZh9gzIvXQUsgw8W5TUVDtF0q4jEJ3iaw
@ttrss
@ttrss Жыл бұрын
real
@Samy---963
@Samy---963 Жыл бұрын
Why isnt it just 2
@ZantierTasa
@ZantierTasa Жыл бұрын
you're thinking of 1 + 1/2 + 1/4 + 1/8...
@Samy---963
@Samy---963 Жыл бұрын
@@ZantierTasa ayo wait nah sorry i was wrong
@Samy---963
@Samy---963 Жыл бұрын
But the technique the guy actually used is lol bruh uncomprehensible
@ZantierTasa
@ZantierTasa Жыл бұрын
@@Samy---963 It's a bit difficult to follow, but if you can understand it step by step, it makes sense. I think this way is a bit easier to understand: 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6.... By only REDUCING terms, we can make this: 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + (1/16 + 1/16.... 2 * 1/4 = 1/2 4 * 1/8 = 1/2 8 * 1/16 = 1/2 1 + 1/2 + 1/2 + 1/2... = infinity Because we only reduced terms, the original sequence must be greater or equal to this.
@yiutungwong315
@yiutungwong315 Жыл бұрын
​@@ZantierTasa 1 + 1/2 + 1/3 + 1/4 Over 2 So the answer is Infinite Sum 😂🌅
@saadbenalla3678
@saadbenalla3678 Жыл бұрын
Damn son
@armandolandomarinelli5087
@armandolandomarinelli5087 Жыл бұрын
What is c
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Any number you want it to be… that’s why the argument works because you can keep using the next value for c
@ujjwalrao6832
@ujjwalrao6832 Ай бұрын
Gah damn that was neat
@brian8507
@brian8507 Жыл бұрын
I will pay u 100 dollars if you can give me visualization of 1+2+3+4+5+6+....=-1/12 Visual
@wumpoooo
@wumpoooo Жыл бұрын
it's false
@wizparanoid8416
@wizparanoid8416 Жыл бұрын
​@@wumpoooo no it isn't
@dnuma5852
@dnuma5852 Жыл бұрын
@@wizparanoid8416 it is. its in reality whats called a ramanujan summation which assigns values to divergent series. in popular mathematics it has been presented as an actual convergence. it isnt.
@wizparanoid8416
@wizparanoid8416 Жыл бұрын
@@dnuma5852 isn't there a proof in calculus for Ramanujan paradox?
@Patrik-bc2ih
@Patrik-bc2ih Жыл бұрын
@@wizparanoid8416 It's a false proof. The proof use that 1-1+1-1+...=1/2, And 1-2+3-4+5-...=1/4 Then S=1+2+3+.. 1/4-S=-4-8-12-.... Which is equal to 1/4-S=-4S 1/4=-3S SO, S=-1/12. But this wrong, I added infinite many numbers, and if you sum infinite many number then you cant interchange them. So a+b=/=b+a.
@rocky_wang
@rocky_wang Жыл бұрын
Good proof but the geometric part seems redundant 😂😂😂
@MathVisualProofs
@MathVisualProofs Жыл бұрын
The proof of the inequality is harder without the geometry…
@ferashamdan4252
@ferashamdan4252 Жыл бұрын
جميل
@UsernameR8
@UsernameR8 Жыл бұрын
The sum is1
@MathVisualProofs
@MathVisualProofs Жыл бұрын
This series diverges. So it does not sum to any number.
@earldominic3467
@earldominic3467 Жыл бұрын
what
@bryanrodriguez2118
@bryanrodriguez2118 5 ай бұрын
Help! (1÷1)+(1÷2)−(1÷3)+(1÷4)+(1÷5)−(1÷6)−(1÷7)+(1÷8)+(1÷9)+(1÷10)−(1÷11)−(1÷12)−(1÷13)+(1÷14)+(1÷15)+(1÷16)+(1÷17)−(1÷18)−(1÷19)−(1÷20)−(1÷21)+(1÷22)+(1÷23)+(1÷24)+(1÷25)+(1÷26)−(1÷27)−(1÷28)−(1÷29)−(1÷30)−(1÷31)+...
@znhait
@znhait Жыл бұрын
Proofs like that are just way too random. This is convenient when you already know the behavior of the series, as you can employ any mathematically valid trick. It's not necessarily useful in learning why this series actually converges.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
I am not sure of a proof of this that doesn't invoke some (seemingly random) lower bound. The series doesn't converge, it diverges, so you have to find some lower bound. This was Bernoulli's way of finding a lower bound. Oreseme's technique was to look at successive runs of length 2^n and bound those below... a standard modern calculus book bounds the sum below by the improper integral of 1/x from 1 to infinity... they are all similar in some sense.
@luukderuijter1332
@luukderuijter1332 Жыл бұрын
Soo -1¿
@loohooi6545
@loohooi6545 Жыл бұрын
We've known that 1 + 1/2 + 1/4 + 1/8 + 1/16 + ······ = 1 / 1-0.5 = 2 The harmonic series is clearly greater than the series above,so 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 +……>2 It is divergent
@MathVisualProofs
@MathVisualProofs Жыл бұрын
Why does greater than 2 automatically mean divergent though?
@yiutungwong315
@yiutungwong315 Жыл бұрын
1 + 1/2 + 1/4 + 1/8 + 1/16 ... = 1 / (1-0.5) = 2 = π in Riemann Paradox And Sphere Geometry Mathematical Systems Incorporated and That...
@yiutungwong315
@yiutungwong315 Жыл бұрын
π^π = 2^2 = 4 = Tau. That's at All 🙂😂
@verymelone
@verymelone Жыл бұрын
my answer to that question was 2 7/60
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 350 М.
Visualizing the derivative of sin(x)
0:59
Mathematical Visual Proofs
Рет қаралды 190 М.
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
진짜✅ 아님 가짜❌???
0:21
승비니 Seungbini
Рет қаралды 10 МЛН
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
The secret behind constants
18:04
MAKiT
Рет қаралды 62 М.
Trig Visualized: One Diagram to Rule them All (six trig functions in one diagram)
4:15
Mathematical Visual Proofs
Рет қаралды 471 М.
Why composers must learn the overtone series
6:46
Score Circuit
Рет қаралды 68 М.
The best A - A ≠ 0 paradox
24:48
Mathologer
Рет қаралды 409 М.
The Harmonic Series | Illustrated Theory of Music #8
12:34
Orchestra of the Age of Enlightenment
Рет қаралды 60 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 283 М.
Programming with Math | The Lambda Calculus
21:48
Eyesomorphic
Рет қаралды 254 М.
The mystery of 0.577 - Numberphile
10:03
Numberphile
Рет қаралды 2 МЛН
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН