sir you are so good in teaching, you made for teaching .
@6kunal94 жыл бұрын
This channel is amazing! Great job sir, you are doing a Fabolous job .
@KshitizVermaDL4 жыл бұрын
Thank you very much!
@priyanshkhunger12835 ай бұрын
awesome explanation, you gained a new subscriber
@KshitizVermaDL5 ай бұрын
Thank you!
@pallabidas30644 жыл бұрын
Nice video sir. Thanks a lot🙏
@KshitizVermaDL4 жыл бұрын
You are most welcome.
@technopathkeshav78353 жыл бұрын
Amazing...😊😊
@KshitizVermaDL3 жыл бұрын
Thanks
@methilmuley90474 жыл бұрын
Sir, what I have to do if I have 224*224*1 dimensional image and I have to use googlenet.
@KshitizVermaDL4 жыл бұрын
Have you been through the basics of CNNs? They should help you.
@aishwaryavpkadam2 жыл бұрын
what did you do?
@moomalpanwar99473 жыл бұрын
hi can you please help me find the number of layers in my inception network made for mtech final project. I am confused how to calculate the number of layers.
@KshitizVermaDL3 жыл бұрын
Hi Moomal. Thanks for the comment. However, it is difficult for me to reach out to individual requests. Sorry!
@manishswami8774 жыл бұрын
thank you sir
@amandhamanda98224 жыл бұрын
Sir complexity nhi bdegi like itne sare filters...
@KshitizVermaDL4 жыл бұрын
Bilkul badhegi!! But authors work at Google! They have the highest quality compute resources. They could manage the increased complexity. In those days, or may be even today, if you are able to train a huge number of parameters successfully, most likely you will have a paper in a tier 1 machine learning conference.
@amandhamanda98224 жыл бұрын
@@KshitizVermaDL sir axha samja...sir eek question har architecture apne m unique h.... So sir koi guidance kb konsa follow kre...like waise toh resnet vgg k compare m jyada axha h...but like resnet aur inception ko bhi compare kre kaise pta chlega konsa use krna h...like inception i think more axhi performance dekega mere understanding se...isko sir elaborate krke btana
@KshitizVermaDL4 жыл бұрын
All the architectures have their pros and cons. You have to see which one fits your task. If you are training on your data, taking inspiration from such networks is good but you may have to design your own architecture. If you don't have compute, use transfer learning. See the video on transfer learning. I think that should help you answer your question up to some extent.
@amandhamanda98224 жыл бұрын
@@KshitizVermaDL okay...Thanks sir
@jayantapaulofficial4 жыл бұрын
sir, what is training error and test error?
@KshitizVermaDL4 жыл бұрын
You need to go through the earlier videos. Such things are discussed in detail. See videos in playlist on regularization.