Let 7^x = t then solving eqn gives t^5-49t^2- 48t-48= 0 Then t= 4= 7^x only real soln. Hence ; x= log_7( 4)
@Shobhamaths4 күн бұрын
Let 7^x=t; t^5-49t^2-49t-48=0 t=4, remaining are complex x=log4(base 7)
@offrampc4 күн бұрын
7^x = 4.
@gregevgeni18644 күн бұрын
Let 7^x = t , then the equation, after some algebra, is equivalent to t⁵ - 49 t² - 48 t - 48 = 0 (t-4)(t²+t+1)(t²+3t+12) = 0 (Horner) => only real solution t =4. So 7^x = 4 => log(7^x) = log4 => x • log7 = log4 => x = (log4)/(log7).
Let 7^x=a. Then, The given equation becomes a^5-49a^2-48a-48=0 a+4 is a solution. [a^5-49a^2-48a-48]/(a-4) = a^4+4a^3+16a^2+15a+12. Let us try a^4+4a^3+16a^2+15a+12 = (a^2+pa+1)(a^2+qa+12). This gives, by comparison, p+q=4, 12p+q=15, 13+pq=16 > p=1, q=3. So, a^2+a+1=0 or a^2+3a+12=0. These do not yield real solutions. So, a=4 > x =ln4/ln7.