What if we changed a Fresnel's integral?

  Рет қаралды 22,074

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 60
@blackpenredpen
@blackpenredpen 2 ай бұрын
I modified the Gaussian integral: kzbin.info/www/bejne/oJWvkKFtoayeq68si=ldFQ04-IlI6tf6r9
@fireballman31
@fireballman31 2 ай бұрын
simplifying the root 2 only to undo it is so real
@damyankorena
@damyankorena 2 ай бұрын
it's not just real. Its algebraic xd
@appybane8481
@appybane8481 2 ай бұрын
@@damyankorena I don't think pi is algebraic.
@thenightjackal
@thenightjackal 2 ай бұрын
​@@appybane8481 yeah it's more trigonometric if anything /j
@Sci-Fi-Mike
@Sci-Fi-Mike 2 ай бұрын
It's so real, but for some students, it's also "complex." My math humor isn't very good, as you can see...
@stephenbeck7222
@stephenbeck7222 2 ай бұрын
@@appybane8481transcendental comment
@FacultyofKhan
@FacultyofKhan 2 ай бұрын
Nice. Now do the integral that Cleo solved on the math stack exchange without any explanation!
@Rando2101
@Rando2101 2 ай бұрын
The one with the inverse tangent of the golden ratio?
@rafaelpascualortega3956
@rafaelpascualortega3956 2 ай бұрын
Just yesterday I had a vector calculus exam where we solved the Fresnel integral using a conservative field and the Gaussian integral, and today you upload this video, what a lovely coincidence.
@robdev02
@robdev02 2 ай бұрын
I'd really like to see the complex analysis approach.
@RandyKing314
@RandyKing314 2 ай бұрын
sometimes it’s good to see some trial and error in a problem solve instead of a clean pre-scripted solution…thanks BPRP!
@d-hat-vr2002
@d-hat-vr2002 2 ай бұрын
Such a nifty question! My solution is similar, but somewhat cleaner in my opinion. First step: I use a substitution of u=1/x (rather than u=1/x²). This reveals that ∫0..∞ sin(1/x²) dx = ∫0..∞ sin(x²)/x² dx Second step: to integrate ∫0..∞ sin(x²)/x² dx use integration by parts (DI method) where D=sin(x²) and I=1/x² This very cleanly produces ∫0..∞ sin(x²)/x² dx = -sin(x²)/x + 2 * ∫0..∞ cos(x²) dx Third step: to evaluate the -sin(x²)/x term at 0, multiply by x/x and then let u=x² so lim u→0 to evaluate the -sin(x²)/x term at ∞, use squeeze theorem.
@markerguy
@markerguy 2 ай бұрын
First time reaching in 38 secs. Gonna watch the full vid now!!
@spoopy1322
@spoopy1322 2 ай бұрын
Really enjoyed the video ❤
@cameronspalding9792
@cameronspalding9792 2 ай бұрын
@ 0:18 One can verify it converges in the Lebesgue sense using the comparison test: 1. For x in (0,1) |sin(1/x^2)|
@General12th
@General12th 2 ай бұрын
So good!
@blackpenredpen
@blackpenredpen 2 ай бұрын
@@General12th thank you!
@Dreamprism
@Dreamprism 2 ай бұрын
2:56 I saw here roughly why it converges. If we split the integral at u=1, then the first part where u approaches 0 we have sin(u) basically the same as u and therefore sin(u) * u^(-3/2) is basically 1/u^(1/2) as we near the vertical asymptote, which we know converges by a p-Test with p1. So abs(our inntegrand) will have an integral that converges to something smaller. Then abs conv implies regular converges of our integral. This is just a rough way of looking at it, but it does make me confident it will converge.
@abvd92840
@abvd92840 2 ай бұрын
This was on the MIT integration bee 2024 or 2023 I don't remember. I was just solving them for fun and got stuck at this part.
@mathiastoala7777
@mathiastoala7777 2 ай бұрын
That thumbnail is just so eviiiil lmaoo 🗣️🔥
@nightytime
@nightytime 2 ай бұрын
7:57 "due diligence"
@blackpenredpen
@blackpenredpen 2 ай бұрын
Thanks!
@scottleung9587
@scottleung9587 2 ай бұрын
Very nice!
@saharhaimyaccov4977
@saharhaimyaccov4977 2 ай бұрын
Great way
@Ben-wv7ht
@Ben-wv7ht 2 ай бұрын
Maybe I'm overdoing it , but I used Ramanujan's master theorem to solve this. The IBP was smarter tho.
@Happy_Abe
@Happy_Abe 2 ай бұрын
How do we solve the cos(x^2) integral?
@mismis3153
@mismis3153 2 ай бұрын
cos(x^2) = Real(e^(-ix^2)).
@Samir-zb3xk
@Samir-zb3xk 2 ай бұрын
4 methods I know of: 1: Use Euler's formula to transform cos(x²) into an exponential function (Real part of e^(-ix²)). Then you can use the Gaussian integral to solve it (after a substitution) 2: Define a function f(t) = (0 to ∞) ∫ cos(tx²) dx Then take the Laplace transform of both sides. The resulting integral is nasty but solvable. (I would factor the the denominator using complex numbers then partial fraction decomposition). Once you have L{f(t)} simplified, you can solve for f(t) and plug in f(1). 3: Sub u = x², then the resulting can be solved using the Mellin transform of cos(x) 4: Sub u = x², then convert cos(u) = Real part of e^(-iu), then the resulting can be solved using the Laplace transform of t^(-1/2) Btw the last 3 methods also requires you to know how to calculate (-1/2)! = √π using the gamma function, which you also need to the know the Gaussian integral for.
@CKNGAI-r8x
@CKNGAI-r8x 2 ай бұрын
​@@Samir-zb3xk For 4 a easier way is realise that it not only it's the tranform of t^-1/2 but also s=i so instead of gamma(1/2)/(s^1/2) which is still a headache and take simply the Re(gamma(1/2)/(i^1/2))
@hcgreier6037
@hcgreier6037 2 ай бұрын
07:18 l'Hospitals rule: for u => 0 the sin(u)/u gives a 0/0 expression again! So there is a small lapsus. Of course, doing l'Hospitals rule again, one gets cos(u)/1, and for u => 0 this is 1/1 = 1.
@stephenbeck7222
@stephenbeck7222 2 ай бұрын
It’s a standard limit, learned before derivatives, that sin(x)/x goes to 0 as x goes to 0.
@hcgreier6037
@hcgreier6037 2 ай бұрын
@@stephenbeck7222 Sorry, but sin(x)/x goes to *1* as x goes to 0.
@bain8renn
@bain8renn 10 күн бұрын
hes made videos about this, but this is a really bad idea, as this exact limit is used to solve the derivative of sinx, meaning its circular reasoning. its neat it works out with l'hopitals rule, but in order to prove that the derivative of sine is cosine, you need the limit, and if you try to use L'H to solve the limit, you need the derivative of sine. there is a way to evaluate the limit with squeeze theorum and geometry that gets the result without causing problems
@ciorchinos
@ciorchinos 2 ай бұрын
the problem is when you introduced the imaginary component, since it is imaginary it does not respect teh initial condition of a>0 since it is an emaginary value, also you cannot subtiture the value with pi because of the same reason. (we should have a rule in math about this substitutions meaning that we need to chack the nature of parameters introduced )
@Nain115
@Nain115 2 ай бұрын
Can I get one of tour t-shirts? I live in Nicaragua tho :c
@cdkw2
@cdkw2 2 ай бұрын
this kind of reminds me of old bprp
@felixmellgren8116
@felixmellgren8116 2 ай бұрын
Why do you always use the letters u & t when doing a substitution
@KaiserBob99
@KaiserBob99 2 ай бұрын
Convention.
@stetzelspretzels930
@stetzelspretzels930 2 ай бұрын
Can you explain the graph of x^x=y^y please? I've been trying for weeks and can't figure it out.
@centristterrorist
@centristterrorist 2 ай бұрын
Xln(x)=Yln(y) Y/X=ln(x)/ln(y), ifk if this helps but thats that
@nyctophile445
@nyctophile445 2 ай бұрын
Hello sir.. i have a very beautiful integral.. please make a video on it's solution... integral: ∫√ (e^(√ x))dx
@Metaverse-d9f
@Metaverse-d9f 2 ай бұрын
use gamma function
@aitordominguez6482
@aitordominguez6482 2 ай бұрын
how
@RezerdPrime
@RezerdPrime 2 ай бұрын
Lets try now \int_{-infty}^{+infty} 1 - cos(tan(1/x)) dx
@EHMM
@EHMM 2 ай бұрын
nice
@Metaverse-d9f
@Metaverse-d9f 2 ай бұрын
You can just solve for x, and then find dx.
@ethohalfslab
@ethohalfslab 2 ай бұрын
No! Don't change my integral >_
@heinrich.hitzinger
@heinrich.hitzinger 2 ай бұрын
Fresnel: 😔
@VideoFusco
@VideoFusco 2 ай бұрын
No offense, but this is really a barbaric way to apply the substitution method in an integral. If you then use the relation u=x^(-2) to rewrite x^3 in terms of u, why not immediately invert the relation by writing x=u^(-1/2) and then derive dx from there? It immediately comes dx=-(1/2)u^(-3/2)du without having to do all those intermediate steps mixing two different variables in an integral that has only one variable! In Italy, anyone who did something like this in a university exam would fail immediately. And even in high school this would determine a significant lowering of the evaluation.
@d-hat-vr2002
@d-hat-vr2002 2 ай бұрын
Math is difficult. You cannot force your mind to see the most elegant derivation. So we cannot blame others for failing to see the most elegant derivation. If you know a better derivation, then share it in a spirit of generosity rather than criticism and competitiveness. Calling someone a "barbarian" by implication is not polite. La matematica è difficile. Non puoi forzare la tua mente a vedere la derivazione più elegante. Quindi non possiamo biasimare gli altri per non aver visto la derivazione più elegante. Se conosci una derivazione migliore, allora condividila con uno spirito di generosità piuttosto che di critica e competitività. Chiamare qualcuno "barbaro" per implicazione non è educato.
@VideoFusco
@VideoFusco 2 ай бұрын
@@d-hat-vr2002 It's not a matter of elegance, but of formal correctness (which is fundamental in mathematics): if you change variables you cannot write an expression that contains both variables at the same time. It's incorrect.
@rachanamathssolutions
@rachanamathssolutions 2 ай бұрын
Scientific Calculator Gives Ans. No Solution
@abuabdullaahiwaaaishatah8235
@abuabdullaahiwaaaishatah8235 2 ай бұрын
Since When Did u bald urself Sir Did Fresnel Do it as a punishment for changing his integral
@PromeaurixhenXhivel
@PromeaurixhenXhivel 2 ай бұрын
i have this queation. Limit[Divide[1,h]\(40)Integrate[f\(40)y\(44)x\(44)t+h\(41),{y,p\(40)x\(44)t\(41),p\(40)x\(44)t+h\(41)},{x,a\(40)t\(41),a\(40)t+h\(41)}],h->0])
@jamelbenahmed4788
@jamelbenahmed4788 2 ай бұрын
First ?
@AndDiracisHisProphet
@AndDiracisHisProphet 2 ай бұрын
nice
@blackpenredpen
@blackpenredpen 2 ай бұрын
Thanks!!
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 566 М.
I used a double integral to solve a single improper integral
11:14
blackpenredpen
Рет қаралды 34 М.
She wanted to set me up #shorts by Tsuriki Show
0:56
Tsuriki Show
Рет қаралды 8 МЛН
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
Berkeley Math Tournament calculus tiebreaker
14:24
blackpenredpen
Рет қаралды 101 М.
Integral of so many things! (great for calculus 2 review)
24:55
blackpenredpen
Рет қаралды 195 М.
This Integral is Nuts
23:03
Flammable Maths
Рет қаралды 84 М.
Researchers thought this was a bug (Borwein integrals)
17:26
3Blue1Brown
Рет қаралды 3,9 МЛН
FRESNEL INTEGRALS in 20mins or less
20:58
Michael Penn
Рет қаралды 33 М.
Programming with Math | The Lambda Calculus
21:48
Eyesomorphic
Рет қаралды 249 М.
Calculus teacher vs L'Hopital's rule students
13:21
blackpenredpen
Рет қаралды 98 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 134 М.
Feynman’s Technique is Unstoppable!!! | Fresnel Integrals
18:02
Jago Alexander
Рет қаралды 10 М.
A Cambridge Integral Experience
29:03
blackpenredpen
Рет қаралды 224 М.
She wanted to set me up #shorts by Tsuriki Show
0:56
Tsuriki Show
Рет қаралды 8 МЛН