What is a Homeomorphism

  Рет қаралды 24,862

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 83
@gandalfthethotful479
@gandalfthethotful479 3 жыл бұрын
Thanks!
@drpeyam
@drpeyam 3 жыл бұрын
Thank you so much for the super thanks, I really appreciate it!!!
@gandalfthethotful479
@gandalfthethotful479 3 жыл бұрын
@@drpeyam absolutely! I love the way you teach. Less boring and more by example 👍
@frozenmoon998
@frozenmoon998 4 жыл бұрын
Casuals: *homomorphism* Dr P: *homeomorphism* I've waited for this for a long time - it's quite the treat.
@jrm6114
@jrm6114 10 ай бұрын
he said that they are different
@izaakvandongen7404
@izaakvandongen7404 4 жыл бұрын
At 11:00, it certainly is possible to remove a point from that interval without disconnecting it. Just take an endpoint! I think the more usual topological invariants used here include "can remove two points without disconnecting it" or "the number of points you can remove that do not disconnect it" or "the number of points you can remove that do disconnect it".
@naturemeets
@naturemeets 4 жыл бұрын
WoW !, Thanks, Dr. Peyam. " NEVER ENDING LEARNING"
@carterwoodson8818
@carterwoodson8818 4 жыл бұрын
@5:16 Remembers pate a modeler but not play-doh that was excellent! Ive heard rubber sheet geometry as well, would say "modelling clay" if wanting to avoid the brand name haha
@sostotenonsosjojododahohlo4580
@sostotenonsosjojododahohlo4580 10 ай бұрын
Dr. Peyam, you are one of the greats on math youtube. I am studying topology right now and some concept can be hard to grasp. Thank you for making videos like this, it really helps! Also you seem like such a fun guy to be around, the energy you give off is amazing. Keep up the good work!
@drpeyam
@drpeyam 10 ай бұрын
Thank you so much :3
@SebastianBaum-z2l
@SebastianBaum-z2l Жыл бұрын
I enjoyed this video really much. You explained it clearly, while you have such an good welcoming attitude. Keep going!
@francaisdeuxbaguetteiii7316
@francaisdeuxbaguetteiii7316 4 жыл бұрын
topology is one of my favourite subjects.
@francaisdeuxbaguetteiii7316
@francaisdeuxbaguetteiii7316 3 жыл бұрын
What the hell happened here
@AmjadKhan-dj8lj
@AmjadKhan-dj8lj 2 жыл бұрын
@@francaisdeuxbaguetteiii7316 Also my favorite subject... Please share your Whatsapp no.
@gmjammin4367
@gmjammin4367 Жыл бұрын
Okay Adam
@francaisdeuxbaguetteiii7316
@francaisdeuxbaguetteiii7316 Жыл бұрын
@@gmjammin4367 who is adam
@AltinoSantos
@AltinoSantos 4 жыл бұрын
A good video. Good selection of properties and examples. Congratulations.
@dabbinrascal7975
@dabbinrascal7975 4 жыл бұрын
Yes I’ve been waiting for this!!! Thank you :)
@denifventear609
@denifventear609 3 жыл бұрын
You wouldn't believe it but I had to learn and apply this notion in literature for a project haha... So thanks for making it easy enough for me to understand!
@BaterWottleDog
@BaterWottleDog Жыл бұрын
im learning this to make math jokes in ceramics class
@dariushanson314
@dariushanson314 2 жыл бұрын
I did not expect an Animorph’s reference. Excellent video.
@umerfarooq4831
@umerfarooq4831 4 жыл бұрын
'Coffee cup is like a donut' well so much for my donut cravings
@vardhanshah
@vardhanshah Жыл бұрын
Great explanation!
@darrenpeck156
@darrenpeck156 2 жыл бұрын
Wow, awesome and concise presentation.
@willnewman9783
@willnewman9783 4 жыл бұрын
20:23 Compact subspaces are not always closed subsets, so this proof does not work. Also, the proof cannot work because it is not true that continuous maps from a compact space are homomorphism, one needs the target to be Hausdorff
@f5673-t1h
@f5673-t1h 4 жыл бұрын
In short: Homeomorphisms are just relabelling the points and getting the same topology.
@janouglaeser8049
@janouglaeser8049 4 жыл бұрын
Precisely
@krumpy8259
@krumpy8259 4 жыл бұрын
I love those "In short" comments, they give further insights.
@nocomment296
@nocomment296 3 жыл бұрын
I wasn't interested in maths but watching 3b1r bprp and some other KZbin channel including yours has completely changed my view.... Now I want to do MSc in mathematics... It's an interesting subject
@drpeyam
@drpeyam 3 жыл бұрын
Congratulations :)
@noahtaul
@noahtaul 4 жыл бұрын
13:28 ...but both (0,1) and [0,1] are open in themselves, so this doesn’t prove they aren’t homeomorphic. You just showed there’s no homeomorphism of R that sends (0,1) to [0,1], which isn’t the same thing. You need the compactness again, or the fact that there are points of [0,1] you can remove and have the remainder be connected, while this is false for (0,1).
@nocomment296
@nocomment296 3 жыл бұрын
Thanks sir for such explanation
@ahmedmghabat7982
@ahmedmghabat7982 4 жыл бұрын
This guy is a legend!!!
@samidracula1484
@samidracula1484 2 жыл бұрын
a very good video and explanation , thank you very much
@ecologypig
@ecologypig 2 жыл бұрын
crystal clear! thanks!
@aurangzeb5735
@aurangzeb5735 3 жыл бұрын
Sir at 0:43 you said that in homeomarphism the function can be from one matric space to another space and at 3:20 you said topology does not see distances. My question is, metric spaces cares about distances so how can we take Metric space as a function in homeomarphism definition?
@dariushanson314
@dariushanson314 2 жыл бұрын
I recommend Munkres Topology for this. Metric spaces are how topological spaces are constructed, and if the inverse of a bijective mapping from one topological space to another is continuous, you have yourself a homeomorphism.
@Zubair622
@Zubair622 Жыл бұрын
You made topology interesting
@FT029
@FT029 4 жыл бұрын
I really like all the motivating examples you give (e.g. the continuous bijection whose inverse isn't continuous)! I am a little curious about the proof of the property at 9:14.
@drpeyam
@drpeyam 4 жыл бұрын
Continuity and Compactness kzbin.info/www/bejne/bILPZ4emo9Wqeqc
@FT029
@FT029 4 жыл бұрын
@@drpeyam thanks!
@shivaudaiyar2556
@shivaudaiyar2556 4 жыл бұрын
Thanks for such a great content with love from India
@soumyadipdey473
@soumyadipdey473 3 жыл бұрын
Very nice sir
@chriswinchell1570
@chriswinchell1570 4 жыл бұрын
Hi Dr., If you find time, can you make a video about the first homology group? Thanks.
@drpeyam
@drpeyam 4 жыл бұрын
No way haha
@chriswinchell1570
@chriswinchell1570 4 жыл бұрын
@@drpeyam I’m fairly sure you must have taken algebraic topology and you took it more recently than I because you’re still suffering from ptsd.
@deeptochatterjee532
@deeptochatterjee532 4 жыл бұрын
I don't know much about topology, is there a way to define the limit of a sequence in a topological space without a metric?
@drpeyam
@drpeyam 4 жыл бұрын
Yes, sn goes to s if for all neighborhoods of s there is N large enough such that for n > N, sn is in that neighborhood
@aneeshsrinivas9088
@aneeshsrinivas9088 11 ай бұрын
Fun fact, JRPG maps are the same as a donut; not a sphere. This is another interesting example of a homeomorphism.
@drpeyam
@drpeyam 11 ай бұрын
Interesting!!
@Happy_Abe
@Happy_Abe 4 жыл бұрын
Animorph fans represent!
@dominicellis1867
@dominicellis1867 4 жыл бұрын
if you were to curve out the real line into a circle does that mean circles are homeomorphic to the real number line and subsequently any interval on the real number line could you also map the xy plane/the complex plane to a sphere mapping x to a circle generated by theta and y to the semi circle generated by angle psi?
@Apollorion
@Apollorion 4 жыл бұрын
So far as I understood it... - The real line has two open ends, but a plain circle hasn't, so they aren't homeomorphic. - If from the plain circle you'd take away a single point though, what'd be left of the circle would be homeomorphic with a line. - Those semi circles need to be open ended, too. So the complex plane won't be homeomorphic with the full surface of a sphere. The way of projection you propose leaves open the poles, as shared end points of the semi circles, and also doesn't include a continuous curve on the sphere surface connecting these poles and that's nowhere parallel to the equator. If you 'wish' to project the complex plane on the surface of a sphere, I think a sort of Riemann sphere would do better: - where the equator equals the unit-circle, - one pole equals the origin, - the other pole equals infinitely big, which is the point that is not part of the complex plane. - Longitude is just the argument or phase of the complex number. - Latitude is just dependent on the modulus.
@wiloux
@wiloux 4 жыл бұрын
maths is just playing with some pâte à modeler after all ;)
@narutosaga12
@narutosaga12 4 жыл бұрын
11:50 how is it that it is both not homeomorphic and homeomorphic at the same time?
@drpeyam
@drpeyam 4 жыл бұрын
No they are not homeomorphic. If I said they are, I misspoke
@FloduQ
@FloduQ 4 жыл бұрын
Is it enough to find one homeomorphism f, so that M and N are homeomorphics ? or do we have to say they are homeomorphics for the specific homeomorphism f ?
@drpeyam
@drpeyam 4 жыл бұрын
One is enough
@SS-ld2hk
@SS-ld2hk 3 жыл бұрын
does (0,1) homeomorphic to R imply that any interval in R is homeomorphism to R
@drpeyam
@drpeyam 3 жыл бұрын
I think so, at least any open one
@aneeshsrinivas9088
@aneeshsrinivas9088 2 жыл бұрын
is there a special name for homeomorphisms which are uniformly continuous?
@drpeyam
@drpeyam 2 жыл бұрын
unimorphisms
@aneeshsrinivas9088
@aneeshsrinivas9088 2 жыл бұрын
Imagine being able to transform any object into any other object as long as they are toplologically homeomorphic in real life(like for example being able to transform a torus into a coffee mug)? How would that be as a superpower ?
@drpeyam
@drpeyam 2 жыл бұрын
Not very effective…
@anchalmaurya2372
@anchalmaurya2372 2 жыл бұрын
Sir, 1/2x is not continuous at 0 but apne [0, 2] liya h?
@drpeyam
@drpeyam 2 жыл бұрын
?
@ekadria-bo4962
@ekadria-bo4962 2 жыл бұрын
By the definition, i wonder: Is R^N Homeomorphic to any interval?
@drpeyam
@drpeyam 2 жыл бұрын
No if n >= 2 because if you remove a point from R^n it’s still connected but if you remove a point from an interval it becomes disconnected
@ekadria-bo4962
@ekadria-bo4962 2 жыл бұрын
@@drpeyam i wonder now. What its still true in R^1 and 2 ?
@isobar5857
@isobar5857 4 жыл бұрын
Well you may not know the the difference between a donut and a cup of coffee but I do...I can eat a donut . Did I pass the test...it was a test, wasn't it ? Sorry for the levity...I gave up on maths after calculus 3. Have a good day sir.
@Tomaplen
@Tomaplen 4 жыл бұрын
Will Lord Peyam have differential geometry videos on 2021? Would be amazing
@drpeyam
@drpeyam 4 жыл бұрын
I’m planning on doing a miniseries on differential forms, sometimes later this year
@aneeshsrinivas9088
@aneeshsrinivas9088 2 жыл бұрын
But is there an explicit formula to go from a coffee cup to a donut?
@drpeyam
@drpeyam 2 жыл бұрын
I bet
@Caleepo
@Caleepo 4 жыл бұрын
Isnt homeomorphism the same as isomorphism ?
@mikhailmikhailov8781
@mikhailmikhailov8781 4 жыл бұрын
In the category of topological spaces it is. The notion of isomorphism is that you can exactly match two objects and their structure, whatever the structure in question might be.
@Caleepo
@Caleepo 4 жыл бұрын
@@mikhailmikhailov8781 aight thank you for your answer, But is there a case in which they are actually different ?
@mikhailmikhailov8781
@mikhailmikhailov8781 4 жыл бұрын
@@Caleepo isomorphism is just a generic term for any sort of equivalence between mathematical objects.
@gordonchan4801
@gordonchan4801 4 жыл бұрын
donuts at home
@lacasadeacero
@lacasadeacero 4 жыл бұрын
The morphism Is something new. Like Stokes theorem. I think we'll find a profound use.
@vedants.vispute77
@vedants.vispute77 4 жыл бұрын
What is your IQ sir?
@dgrandlapinblanc
@dgrandlapinblanc 2 жыл бұрын
Ok. So (f)-1 is continuous on the circle of radius 1 to the (0,2pi] because she's one to one and not onto sorry. Thank you very much.
UC Berkeley Math PhD Entrance Exam Question
19:43
Dr Peyam
Рет қаралды 21 М.
Topologist Sine Curve
22:36
Dr Peyam
Рет қаралды 18 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
What is a metric space ?
19:43
Dr Peyam
Рет қаралды 47 М.
Taste of topology: Open Sets
23:48
Dr Peyam
Рет қаралды 28 М.
Topological Homeomorphisms Part 1
20:38
Elliot Nicholson
Рет қаралды 29 М.
Intro to Topology - Turning a Mug Into a Doughnut
8:37
Drew's Campfire
Рет қаралды 94 М.
Compactness
22:38
Dr Peyam
Рет қаралды 28 М.
Cantor Intersection Theorem
12:59
Dr Peyam
Рет қаралды 8 М.
Manifolds 1 | Introduction and Topology
9:21
The Bright Side of Mathematics
Рет қаралды 191 М.
What's a Tensor?
12:21
Dan Fleisch
Рет қаралды 3,7 МЛН
The derivative isn't what you think it is.
9:45
Aleph 0
Рет қаралды 712 М.