This is a great way to simplify a concept. Thanks a lot, Dr. Chris.
@DrChrisTisdell11 жыл бұрын
Thanks for the comment. The book will be published by Springer (and I expect there will be an ebook version.) Best wishes.
@meenap32905 жыл бұрын
Semma sir .your explanation is good.I just liket english.bacase my education=12th=tamil mediam sir. Clg=English mediam(maths).. But your explanation is perfact sir..clear simlify sir
@seyeeet80634 жыл бұрын
what book?
@nimraakram35394 жыл бұрын
Sir is the converse of lemma 1 exist?? If not than why? Can you help
@maurapintor738010 жыл бұрын
Thank you! Awesome and clear explanation, not too long and very helpful! Understandable language for Italians, too :)
@ThePlec11 жыл бұрын
Amazing how you simplify such a thing that has eluded my understanding for almost a year. :-)
@cieloestelaramirezdearella19124 жыл бұрын
same thing here haha. this guy made and excellent vid
@gauravkumawat5756 Жыл бұрын
Sir, this was very nice way to show the explanation of a very much complex topic, very much happy to find first time the meaning of this, hats off to you sir
@junaidjawaid5473 жыл бұрын
Thank you Dr. Tisdell for taking out the time to make this video. It really cleared my concept and was helpful to me and so many other.
@TheSarmientos12311 жыл бұрын
Dr. Tisdell thank you very much. An extremely thankful math student from Norway. Sergio.
@pranaowalekar11 жыл бұрын
the lecture was awesome. cleared my concepts in one go. keep up the good work!
@nesta777410 жыл бұрын
Excellent presentation. Very precise and plenty of examples. Much appreciated!
@amargupta71232 жыл бұрын
awesome content has been presented in this video, very less resources are there for clear explanation. Thanks Dr Chris
@theproofessayist84412 жыл бұрын
You could mention to help your presentation when you went over the example of two functions added where the trigonometric function is added with a polynomial function that the derivative is a linear transformation so we can examine bit by bit and that because cosine is bounded between unit circle from -1
@howtomath4398 Жыл бұрын
The trig function in this example is a function of t. And its partial derivative w.r.t y equals 0.
@sathyam9094 жыл бұрын
Sir kindly explain the Lipchitz cond for x^3(e^xy^2), o
@littlewhitebutterflies45864 жыл бұрын
So basically, the Lipschitz condition states that if the maximum rate of change is K, then the maximum possible change in the output is what it would be given the rate of change over the entire interval is its maximum value K. Lol, this is actually a lot less confusing than it appears to be. Thank you for the explanation!
@omkar.c.kadale5 жыл бұрын
Thank you so much Dr chris for the video you cleared my doubt in too simple way
@md.alamgirhossain39803 жыл бұрын
really helpful.Respect from Bangladesh
@nardiverbanac67143 жыл бұрын
Dear dr. Tisdell, could You make an example for the calculation of a Lipschitz constant for a vector valued function?
@vijaysinghchauhan7079 Жыл бұрын
very simplistically explained the concept.
@tranducthien19875 жыл бұрын
Thank you very much Dr. Chris for the useful video.
@proman10127 жыл бұрын
Thanks sir...I want to be a theoritical physicist.....this lecture was very helpful for me
@meenap32905 жыл бұрын
Semma sir.explanatione is good._(my mother language tamil).english =just dificalut .but....your explanation is realy very perfact
@gracemisere699412 жыл бұрын
Waaaaw, i like this, the explanation is so clear.Thank you for this
@GAGANDEEP8711 жыл бұрын
Thank you Dr. Tisdell. This is an awesome and very clear explanation of the concept.
@200AFK2 жыл бұрын
Thank you for your effort and for the explanation!
@juanvaldez41697 жыл бұрын
Beautiful presentation, sir. Thank you!
@zakharypatrew6069 Жыл бұрын
would be great to hear how this relates to complete vector fields
@iordanmares441411 жыл бұрын
Thanks for your video Dr. Tisdell, but, please, when you finally launch your book, let us know where we can buy it.... Thanks again!!!
@gkurosaki174 жыл бұрын
Thank you very much, i needed an explanation like this to keep going on my studies.
@msudandevkota67973 жыл бұрын
Awesome sir. I want to do my PhD under your supervision, sir. How can I contact you?
@Krishnajha201016 жыл бұрын
How is the infinite strip not a convex set(in the context of line joining the two points being in the set D)?
@Steve-gk3gz3 жыл бұрын
Thank you, nice presentation
@harpreetmehra51654 жыл бұрын
Hii,your video is very helpful .thank you so much
@nikhil80026 жыл бұрын
Thank you chris. Can you post a lecture on method of successive approximation?
@rakhi_prajapati6 жыл бұрын
respected teacher if you don't mind, pls upload some vedioes based on existence and uniqueness theorems of ordinary differential equations say 1. couchy Euler theorem 2. couchy peano existence theorem...etc
@philippos43302 жыл бұрын
I very much appreciated this presentation. But I got quite confused by the use of two different variables for the vertical axis; namely, y and p (see, e.g., the example around @10:00). Is there a particular reason for that, and if yes, why then we still use one variable (namely: t) for the other axis?
@DrChrisTisdell11 жыл бұрын
I am glad you can understand it now.
@ProfessionalTycoons6 жыл бұрын
this is very great presentation.
@TheWameedh10 жыл бұрын
Thank you for this clear lecture
@manojsiyag32713 жыл бұрын
lot of thx sir i really understand deeply this topic today
@JunO-tq6td8 жыл бұрын
Thank you. Your video was very useful, but i would appreciate if you could explain me why at 8:17 you put an absolute value and at the same time you put an inequallity.
@JunO-tq6td8 жыл бұрын
I mean before 8:17, inside the integral
@Shujaat-Khan3 жыл бұрын
Thank you so much for this useful video.
@mathuniverseonline4 жыл бұрын
Good explanation 👌
@GerardoFloresC9 жыл бұрын
Hi Dr Chris Tisdell, Could you provide us the PDF file "What is a Lipschitz condition?" please? Thanks in advance.
@wihenao10 жыл бұрын
I find a problem with example 1 on 4:37 . When you take two points (t, u) and (t, v). you're constraining yourself to a line. Not to R^2. You only proved lipschitz continuity in one direction. You would need to also prove that two points (t, u) and (z, u) satisty lipschitz continuity. unfortunately this is not true since t^2 does not have a constrained derivative
@DrChrisTisdell10 жыл бұрын
Hi - there is no problem. I do not claim that this $f$ is Lipschitz in both variables. Rather, I claim that it is Lipschitz in the second variable only. Best wishes.
@wihenao10 жыл бұрын
Dr Chris Tisdell Oh. I see. You DO mention that. But the sheet states D = R^2 which leads to my confusion
@DrChrisTisdell10 жыл бұрын
Wilmer Henao Great. If you look at the way I define a Lipschitz condition in (2) then D = R^2 is OK. ;-)
@DrChrisTisdell10 жыл бұрын
Yeidy Henao My pleasure!
@ThomasBarry959 жыл бұрын
Excellent thank you! Any news on your book?
@jayjayf96994 жыл бұрын
so the lipschitz condition is just saying that the if the integral of the dependant function converges then the differential equation has a solution, as if you integrate and then find out that the integral doesn't converge then you wont get a solution, right?
@yx44749 жыл бұрын
Thank you very very much for your clear explanation
@prakhargarg88264 жыл бұрын
mid sems cming up, saved me. Muchas Gracias!
@cieloestelaramirezdearella19124 жыл бұрын
Awesome explanation! thank u very much
@shihaowang1529 жыл бұрын
excellent example and explanation! thx a lot!
@张飞-s3k8 жыл бұрын
your video is very helpful for me ,thank you very much
@ME135Project12 жыл бұрын
Can we download the slides/handouts so we can follow along with you in the video?
@AxiomTutor7 жыл бұрын
Interesting how pen and paper is still better than most presentations using digital pens.
@الدلاتلبلا4 жыл бұрын
What is different between local and global lipschtize condition
@bryanlinkhunt60636 жыл бұрын
At about 2:36 you give a reference to Lipschitz' paper of 1876. However, the bibliography entry gives the wrong article. It should be Sur la possibilité d'intégrer complètement un système donné d'équations différentielles, from Bulletin des Sciences Mathématiques et Astronomiques, vol. 10.
@sinaasadiyan Жыл бұрын
great explanation
@seyeeet80634 жыл бұрын
is it part of a playlist? if so can you tell me the link for the playlist?
@DrChrisTisdell11 жыл бұрын
My pleasure and best wishes to all in Norway.
@DrChrisTisdell12 жыл бұрын
Thanks and good luck with Lipschitz conditions.
@contnuum16074 жыл бұрын
Dr. Chris, Are there English translations of those papers by Picard or Lipschitz or Lindelof available?
@bonzoandzoso4 жыл бұрын
Love your videos!
@jeremie41747 жыл бұрын
Really clear explanations thank you sir
@DrChrisTisdell11 жыл бұрын
Thank you!
@BV28 жыл бұрын
Hi, I have a question, What does a rectangle? R:={(t,p): tϵ[a,b] , |p-A|
@TheMadRunner0012 жыл бұрын
Hi, Could you please make a presentation about Sobolev spaces and weak formulation?
@msleena59046 жыл бұрын
I need an explanation of the book of convex functions and orlicz spaces can you help me
@tnaduc9 жыл бұрын
Dr. Chris, Thank for the nice video about Lipschitz. As Lipschitz condition is "stronger" than continuity but weaker than discontinuity. So how does it look like in picture? (continuity is like drawing a line without removing the pen from paper). Thanks.
@MichaelJacobMathew9 жыл бұрын
I think one should draw with a finite speed (lipchitz constant)... Too much rate of increase would make your lipchitz constant tend to infinity (like a step change). This is just my idea. Any comments are welcome.
@tnaduc9 жыл бұрын
Micheal, I got your point. But a step change (I assume you're talking about a jump) is discontinuous, i.e, not different than usual continuity. What I want to know is a situation that differentiates Lipschitz continuity and usual continuity. Probably where the rate of change is equal to infinity but still continuous. I haven't figure out how yet.
@MichaelJacobMathew9 жыл бұрын
Duc, How about y = x^(1/3) at x = 0; Here when you try to take a neighborhood at x = 0, you find that the rate of increase of the function is approaching infinity while the function is perfectly continuous at x = 0.
@tnaduc9 жыл бұрын
Michael Jacob Mathew Nice. I got it. Thank you for following up. Great.
@DrChrisTisdell11 жыл бұрын
Hi - I hope to publish a book this year with some of the material therein. Thanks!
@m-for-maths691010 жыл бұрын
nice example.. plz suggest me good book for this
@DrChrisTisdell10 жыл бұрын
Hi - thanks. Actually, I will be publishing a book about this with Springer in 2015. If you can't wait until then, then I suggest any book by Earl Coddington.
@m-for-maths691010 жыл бұрын
thnx....
@m-for-maths691010 жыл бұрын
8423015701
@firkka11 жыл бұрын
Thanks alot. Very nice examples.
@DrChrisTisdell10 жыл бұрын
My pleasure!
@g-abeshawel9603 Жыл бұрын
the rectangle what do you mean
@DrChrisTisdell12 жыл бұрын
Hi - thanks! Good luck with your exam!
@jamesang78614 жыл бұрын
Yay, a lecturer from my alma mater! =)
@harsharajkamal34338 жыл бұрын
gd way of explaining by using examples
@nmana97593 жыл бұрын
I don't understand, how did you conclude that the function does not satisfy Lipschitz from the equation 12:45 ??
@PRICEGWX12 жыл бұрын
This is brilliant, thank you. Can we download the slides anywhere? Please? :P
@DrChrisTisdell12 жыл бұрын
Yes, I plan to get to Sobolev spaces eventually.
@mohammedtalha46496 жыл бұрын
Thank you. Very intuitive
@DrChrisTisdell12 жыл бұрын
Hi - sorry but I don't understand your question. Can you re-state the question?
@DontLookLikeAFool12 жыл бұрын
Thank You so Much! Your videos helps a lot!
@DrChrisTisdell11 жыл бұрын
You are very welcome.
@shaurovdas58424 жыл бұрын
Where do I find this pdf? Thank you.
@DrChrisTisdell11 жыл бұрын
Hi - I will be launching a new book soon with some of the material therein!
@g-abeshawel9603 Жыл бұрын
thank you very much
@aidairguedi13594 жыл бұрын
سلام استاد من افضلك اريد pdf لهدا الدرس
@شیعہمعارف2 жыл бұрын
Thank you 💗
@mkuseligobo55855 жыл бұрын
Thanks for your video Dr. Tisdell, that was usefull.
@ShaymaAdil-r6s Жыл бұрын
very good
@allwanamar18 жыл бұрын
you are wonderful !
@laxmimishra60126 жыл бұрын
a very very thanks sir
@aidairguedi13594 жыл бұрын
استاد احتاج هده pdf
@tammineniharinarayana69786 жыл бұрын
thank you sir
@rhyswells87258 жыл бұрын
maths is great :)
@mathveeresh1683 жыл бұрын
Hi again everyone My mathematics mind eigen every one
@estefanovignetta78247 жыл бұрын
Thanks!
@sandeepkhod90386 жыл бұрын
Thanks
@akashsuryawanshi62674 жыл бұрын
Thanks you the a god.
@ricardoavila15905 жыл бұрын
i do not undersand comparison lemma
@DrChrisTisdell11 жыл бұрын
:-)
@greenergrass40607 жыл бұрын
pop six squish uhuh cicero lipschiz
@djcrazy26853 жыл бұрын
lipschitz condition, they couldn't say a math or calculas condition!!